蛋白质质谱

UPS1和UPS2蛋白组学标准品

Sigma现提供通用蛋白质组学标准品和蛋白质组学动态范围标准品,可用作质谱应用的复杂、明确的参考标准品。这两种标准品都含有相同的48种人类蛋白质,分子量范围从6000到83000道尔顿。配制前每种组成蛋白质都经过H高效液相纯化和AAA定量。

  • 排除故障,优化您的分析实验方案
  • 分析关键样品前确认系统适用性
  • 标准化每天和每个实验室的分析结果
  • 确定您的检测限

 

 通用蛋白质组学标准品,UPS1

与分子生物资源机构蛋白质组学标准研究组织(sPRG)共同研发的通用蛋白质组学标准品(UPS1)含有48种人类蛋白质(每种5 pmol),分子量范围为6,000-83,000道尔顿。

 

 蛋白质组学动态范围标准品,UPS2

标准品是Sigma初代通用蛋白质组学标准品(UPS1)的增强版。相同的48种复杂的人类蛋白质混合物被配制成浓度范围从500 mol到50 pmol的动态范围。

 

订购信息

产品编号 产品名称 包装规格 加入购物车
UPS1 通用蛋白质组学标准品 1 set
UPS2 蛋白质组学动态范围标准品 1 set

每套包含一管通用蛋白质组标准品和一管(20 µg)蛋白质组级胰蛋白酶(T6567)

 

 ABRF sPRG 2006研究

在2005/2006秋冬季,ABRF sPRG(蛋白质组学标准研究组织)开展了一项评估蛋白质组学实验室分析能力的研究。全球约有125个实验室自愿参加。每个实验室都收到了49种未知蛋白质的复杂混合物,并被要求用他们最好的分析策略尽可能多地鉴定这些蛋白质。 2006年2月提交的结果出人意料。了解更多关于sPRG 2006研究的内容

 

LUPS蛋白列表

登录号 UPS1数量(fmol) UPS2 数量(fmol) Uniprot蛋白质名称(同义词) 分子量(Da)(理论值) 来源或重组 宿主 标签 潜在PTMs
P00915 5,000 50,000 碳酸酐酶1 28,738 红细胞     乙酰化
P00918 5,000 50,000 碳酸酐酶2 29,115 红细胞     乙酰化
P01031 5,000 50,000 补体C5 [补体 C5a] 8,536 重组 E. coli    
P69905 5,000 50,000 血红蛋白a链 15,126 红细胞      
P68871 5,000 50,000 血红蛋白β链 15,867 红细胞    

乙酰化, 

亚硝基化 

糖基化

P41159 5,000 50,000 瘦素 16,158 重组 E. coli    
P02768 5,000 50,000 血清白蛋白 66,357 重组 Pichia pastoris    
P62988 5,000 50,000 过氧化氢酶 10,597 重组 E. coli 6-His  
P04040 5,000 5,000 细胞色素b5 59,625 红细胞      
P00167 5,000 5,000 细胞色素b5 16,022 重组 E. coli 6-His  
P01133 5,000 5,000 表皮生长因子 6,353 重组 E. coli    
P02144 5,000 5,000 肌红蛋白C 17,053 Heart      
P15559 5,000 5,000 NAD(P)H脱氢酶[醌] 1 [DT心肌黄酶] C 30,736 重组 E. coli    
P62937 5,000 5,000 肽基 - 脯氨酰顺反异构酶A [亲环蛋白A] 20,176 重组 E. coli    
Q06830 5,000 5,000 过氧化物毒素1 21,979 重组 E. coli    
P63165 5,000 5,000 小泛素相关修饰物1 [SUMO-1] 38,815 重组 E. coli GST  
P00709 5,000 500 α-乳清蛋白 14,078 Milk     糖基化
P06732 5,000 500 肌酸激酶M型[CK-MM] 43,101 Heart      
P12081 5,000 500 组氨酰-tRNA合成酶[Jo-1] 58,233 重组 E. coli    
P61626 5,000 500 溶菌酶C 14,701 Milk      
Q15843 5,000 500 泛素样蛋白Nedd8 9,072 重组 E. coli    
P02753 5,000 500 视黄醇结合蛋白 21,071 Urine      
P16083 5,000 500 核糖基二氢烟酰胺脱氢酶[醌] [醌氧化还原酶2] [NQO2] 25,821 重组 E. coli    
P63279 5,000 500 泛素结合酶E2 I  18,007 重组 E. coli    
P01008 5,000 50 抗凝血酶III 49,039 Plasma     糖基化
P61769 5,000 50 β-2微球蛋白 11,731 Urine      
P55957 5,000 50 BH3相互作用域死亡激动剂[BID] 21,995 重组 E. coli    
O76070 5,000 50 γ-突触核蛋白 15,363 重组 E. coli    
P08263 5,000 50 谷胱甘肽S-转移酶A1 [GST A1-1] 25,500 重组 E. coli    
P01344 5,000 50 胰岛素样生长因子II 7,475 重组 E. coli    
P01127 5,000 50 血小板衍生生长因子B链 12,294 重组 E. coli    
P10599 5,000 50 硫氧还蛋白 12,429 重组 E. coli 6-His  
P99999 5,000 5 细胞色素c 11,618 重组 E. coli    
P06396 5,000 5 凝溶胶蛋白 82,959 Plasma     磷酸化
P09211 5,000 5 谷胱甘肽S-转移酶P [GST] 23,225 Placenta      
P01112 5,000 5 GTPase HRas [Ras protein] 21,298 重组 E. coli    
P01579 5,000 5 干扰素γ(IFN-γ) 16,879 重组 E. coli    
P02787 5,000 5 转铁蛋白 75,181 Plasma     糖基化
O00762 5,000 5 泛素结合酶E2 C [UbcH10] 20,475 重组 E. coli 6-His  
P51965 5,000 5 泛素结合酶E2 E1 [UbcH6] 22,227 重组 E. coli 6-His  
P08758 5,000 0.5 膜联蛋白A 5 35,806 Placenta     乙酰化
P02741 5,000 0.5 C-反应蛋白 23,047 Plasma      
P05413 5,000 0.5 脂肪酸结合蛋白 14,727 Plasma    

乙酰化, 

磷酸化

P10145 5,000 0.5 白细胞介素8 8,386 重组 E. coli    
P02788 5,000 0.5 乳铁蛋白 76,165 Milk     糖基化
P10636 5,000 0.5 微管相关蛋白tau [Tau蛋白] 45,719 重组 E. coli 6-His  
P00441 5,000 0.5 超氧化物歧化酶[Cu-Zn] 15,805 红细胞     乙酰化
P01375 5,000 0.5 肿瘤坏死因子[TNF-α] 17,353 重组 E. coli    

 

 UPS1参考文献

  1. Tabb, D.L., et al., MyriMatch: Highly Accurate Tandem Mass Spectral Peptide Identification by Multivariate Hypergeometric Analysis.  J. Protein Res., 6(2), 654-661 (2007). Abstract
  2. Uwaje, N.C., et al., Interrogation of MS/MS search data with an pI Filter algorithm to increase protein identification success.  Electrophoresis, 28(12), 1867-1874 (2007). Abstract
  3. Brosch, M., et al., Comparison of Mascot and X!Tandem performance for low and high accuracy mass spectrometry and the development of an adjusted Mascot threshold.  Mol. Cell. Proteomics, 7(5), 962-970 (2008). Abstract
  4. Molina, H., et al., Comprehensive comparison of collision induced dissociation and electron transfer dissociation.  Anal. Chem., 80(13), 4825-4835 (2008). Abstract
  5. Fusaro, V.A., et al., Prediction of high-responding peptides for targeted protein assays by mass spectrometry.  Nat. Biotechnol., 27(2), 190-198 (2009). Abstract
  6. Davidson, W.S., et al., Proteomic Analysis of Defined HDL Subpopulations Reveals Particle-Specific Protein Clusters.  Arterioscler. Thromb. Vasc. Biol., 29(6), 870-876 (2009). Abstract
  7. Paulovich, A.G., et al., Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance.  Mol. Cell. Proteomics, 9(2), 242-254 (2010). Abstract
  8. Tabb, D.L., et al., Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatography-Tandem Mass Spectrometry.  J. Proteome Res., 9(2), 761-776 (2010). Abstract
  9. Kim, M.S., et al., Assessment of Resolution Parameters for CID-Based Shotgun Proteomic Experiments on the LTQ-Orbitrap Mass Spectrometer.  J. Am. Soc. Mass. Spectrom., 21(9), 1606-1611 (2010). Abstract
  10. Li, B., et al., Confident identification of 3-nitrotyrosine modifications in mass spectral data across multiple mass spectrometry platforms.  J. Proteomics, 74(11), 2510-2521 (2011). Abstract
  11. Yen, C.Y., et al., Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library.  Mol. Cell. Proteomics, 10(7), M111.007666 (2011). Abstract
  12. Ma, X., et al., Processing methods for signal suppression of FTMS data.  Proteome Sci., 9 Suppl 1, S2 (2011). Abstract
  13. Wu, Q., et al., NSI and NSMT: usages of MS/MS fragment ion intensity for sensitive differential proteome detection and accurate protein fold change calculation in relative label-free proteome quantification.  Analyst, 137(13), 3146-3153 (2012). Abstract
  14. Wright, J.C., et al., Enhanced Peptide Identification by Electron Transfer Dissociation Using an Improved Mascot Percolator.  Mol. Cell. Proteomics, 11(8), 479-491 (2012). Abstract
  15. Nahnsen, S., and Kohlbacher, O., In silico design of targeted SRM-based experiments.  BMC Bioinformatics, 13 Suppl 16, S8 (2012). Abstract
  16. Reiz, B., et al., Chemical rule-based filtering of MS/MS spectra.  Bioinformatics, 29(7), 925-932 (2013). Abstract
  17. Augustsson, P., et al., Acoustophoretic microfluidic chip for sequential elution of surface bound molecules from beads or cells.  Biomicrofluidics, 6(3), 34115 (2012). Abstract
  18. Milac, T.I., et al., Analyzing LC-MS/MS data by spectral count and ion abundance: two case studies.  Stat. Interface, 5(1), 75-87 (2012). Abstract
  19. Jian, L., et al., A Novel Algorithm for Validating Peptide Identification from a Shotgun Proteomics Search Engine.  J. Proteome Res., 12(3), 1108-1119 (2013). Abstract
  20. Zerck, A., et al., Optimal precursor ion selection for LC-MALDI MS/MS.  BMC Bioinformatics, 14, 56 (2013). Abstract
  21. Higgs, R.E., et al., Quantitative Proteomics via High Resolution MS Quantification: Capabilities and Limitations.  Int. J. Proteomics, 2013, 674282 (2013). Abstract                                                                                       
  22. Kertész-Farkas, A., et al., PTMTreeSearch: a novel two-stage tree-search algorithm with pruning rules for the identification of post-translational modification of proteins in MS/MS spectra.  Bioinformatics, 30(2), 234-241 (2014). Abstract
  23. Gatto, L., and Christoforou, A., Using R and Bioconductor for proteomics data analysis.  Biochim. Biophys. Acta, 1844(1 Pt A), 42-51 (2014). Abstract
  24. Van Riper, S.K., et al., Improved Intensity-Based Label-Free Quantification via Proximity-Based Intensity Normalization (PIN).  J. Proteome Res., 13(3), 1281-1292 (2014). Abstract
  25. Rudnick, P.A., et al., Improved Normalization of Systematic Biases Affecting Ion Current Measurements in Label-free Proteomics Data.  Mol. Cell. Proteomics, 13(5), 1341-1351 (2014). Abstract
  26. Ivanov, M.V., et al., Empirical multi-dimensional space for scoring peptide spectrum matches in shotgun proteomics.  J. Proteome Res., 13(4), 1911-1920 (2014). Abstract
  27. Baba, T., et al., Phosphatidic Acid (PA)-Preferring Phospholipase A1 Regulates Mitochondrial Dynamics.  J. Biol. Chem., 289(16), 11497-11511 (2014). Abstract
  28. Kannaste, O., et al., Cross-correlation of spectral count ranking to validate quantitative proteome measurements.  J. Proteome Res., 13(4), 1957-1968 (2014). Abstract
  29. Tu, C., et al., Systematic Assessment of Survey Scan and MS2-Based Abundance Strategies for Label-Free Quantitative Proteomics Using High-Resolution MS Data.  J. Proteome Res., 13(4), 2069-2079 (2014). Abstract
  30. Prokai, L., et al., Selective chemoprecipitation to enrich nitropeptides from complex proteomes for mass-spectrometric analysis.  Nat. Protoc., 9(4), 882-895 (2014). Abstract
  31. Chawade, A., et al., Normalyzer: A Tool for Rapid Evaluation of Normalization Methods for Omics Data Sets.  J. Proteome Res., 13(6), 3114-3120 (2014). Abstract
  32. Ebhardt, H.A., et al., Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2× sequence coverage.  Rapid Commun. Mass Spectrom., 28(24), 2735-2743 (2014). Abstract
  33. Koh, H.W., et al., EBprot: Statistical analysis of labeling-based quantitative proteomics data.  Proteomics, 15(15), 2580-2591 (2015). Abstract
  34. Qi, D., et al., The mzqLibrary - An open source Java library supporting the HUPO-PSI quantitative proteomics standard.  Proteomics, 15(18), 3152-3162 (2015). Abstract
  35. Pursiheimo, A., et al., Optimization of Statistical Methods Impact on Quantitative Proteomics Data.  J. Proteome Res., 14(10), 4118-4126 (2015). Abstract
  36. Suomi, T., et al., Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins.  J. Proteome Res., 14(11), 4564-4570 (2015). Abstract
  37. Liang, X., et al., An adaptive classification model for peptide identification.  BMC Genomics, 16(Suppl 11):S1 (2015). Abstract
  38. Ramus, C., et al., Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset.  J. Proteomics, 132, 51-62 (2016). Abstract
  39. Ramus, C., et al., Spiked proteomic standard dataset for testing label-free quantitative software and statistical methods.  Data Brief, 6, 286-294 (2016). Abstract