N-Glycosidase A

Peptide-N-glycosidase A, PNGase A, peptide-N\(^\circ\)-[N-acetyl-\(\beta\)-glucosaminy] asparagine amidase, EC 3.5.1.52 from sweet almonds

Cat. No. 11 642 995 001
5 mU (100 \(\mu\)l)

<table>
<thead>
<tr>
<th>Form</th>
<th>Solution in 50 mM citrate/ phosphate buffer, glycerol, 50 % (v/v), pH 5.0.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific activity</td>
<td>>0.5 U/mg protein. One unit is the enzyme activity that hydrolyzes 1 (\mu)M ovalbumin glycopeptide Glu-Glu-Lys-Tyr-Asn-(CHO)-Leu-Thr-Ser-Val within 1 min at +37°C at pH 5 when the incubation conditions described below. (CHO consists of hybrid- and high-mannose type oligosaccharides).</td>
</tr>
<tr>
<td>Stability</td>
<td>Stable at -15 to -25°C. Repeated freezing and thawing has no effect on the enzyme activity.</td>
</tr>
</tbody>
</table>

Absence of contaminating activities

\(\beta\)-Galactosidase, \(\alpha\)-galactosidase, \(\beta\)-glucosidase, \(\alpha\)- and \(\beta\)-mannosidase, \(\beta\)-N-acetylhexosaminidase, \(\alpha\)-L-fucosidase, \(\beta\)-xyloligosidase:
Activities measured with the corresponding 4-nitrophenyl glycosides (10 mM each) at +37°C in 100 mM citrate/phosphate buffer, pH 5, are below 0.1%.

Sialidase
Activity measured with 0.1 mM 2′-(4-methylumbelliferonyl)-\(N\)-acetyl-neuraminic acid at +37°C in 100 mM citrate/phosphate buffer, pH 5, is < 0.1%.

Proteases
After incubation of 7 mU N-glycosidase A with 200 \(\mu\)g Universal Protease Substrate, for 17 h at +37°C in 200 \(\mu\)l 50 mM potassium phosphate buffer, pH 7.8, no protease activity is detected, according to the method of Twining (1).

Isolation and properties

N-Glycosidase A is an amidase and cleaves N-glycans between asparagine and the carbohydrate chain, thereby converting asparagine to aspartic acid. The enzyme is an excellent tool to isolate both intact oligosaccharide and peptide moieties for the structural analysis and the functional examination of each moiety. The oligosaccharide is first released as a glycosylamine, which hydrolyzes spontaneously under the acidic conditions of the reaction to the reducing end containing glycan and to ammonia (2). The pH-optimum of the enzyme is very broad between 4.0 and 6.0. Above pH 7.0 the activity decreases rapidly. In contrast, the enzyme retains a partial activity even at pH 2 (2). N-Glycosidase A is purified from sweet almond meal and shows one band corresponding to a molecular weight of 52.5 kDa upon SDS-PAGE (Fig. 1). The enzyme was first described by Takahashi (3). The enzyme itself is a glycopeptide (4).

Specificity
N-Glycosidase A cleaves all types of asparagine bound N-glycans including high mannose-, hybrid-, biantennary-, triantennary- and tetraantennary complex types (5), provided that the amino group as well as the carboxyl group are present in peptide linkage. N-Glycosidase A can also cleave a single N-acetylglucosamine residue from the peptide, albeit at a slower reaction rate (6).

In contrast to N-glycosidase F\(^*\) from Flavobacterium meningosepticum, N-glycosidase A from almonds can degrade N-linked glycans carrying a fucose linked \(\alpha\) (1-3) to Asn-GlcNAc (7). This structural motif is present in plant glycoproteins and is also found in insect glycoproteins.

Deglycosylation
N-Glycosidase A is mainly used for the cleavage of glycopeptides.

1. **Incubation conditions for the removal of N-glycans from glycopeptides**

For measuring N-glycosidase A activity dilute the enzyme 1:100 in 100 mM citrate/ phosphate buffer, pH 5.0, containing bovine serum albumin (BSA), 0.1% (v/v). Add 10 \(\mu\)l 100 \(\mu\)M ovalbumin glycopeptide, dissolved in double-distilled water, to 10 \(\mu\)l (5 \(\mu\)l) diluted enzyme and incubate at +37°C for 60 min. Quantify the reaction products by absorption at 220 nm on reversed phase HPLC (5 \(\mu\)m ODS-Hypersil column). The \(K_m\) value for ovalbumin glycopeptide is 7 \(\mu\)M.

For preparative digestions incubate 100 nmole glycopeptide with 0.2 - 0.5 mU N-glycosidase A in 20 - 50 \(\mu\)l buffer without BSA for 24 h at +37°C. To obtain glycopeptides, trypsin sequencing grade\(^*\), chymotrypsin sequencing grade\(^*\), or pepsin\(^*\) may be used. These enzymes can be heat-inactivated (5 to 10 min, +100°C) for a direct use in N-glycosidase A digestions.

Figure 1: SDS-PAGE of N-glycosidase A

- **Lane 1:** Molecular weight marker proteins
- **Lane 2:** 5 mU of N-glycosidase A

[Image of SDS-PAGE][1]

For life science research only.
Not for use in diagnostic procedures.

Roche

[1] sigma-aldrich.com
2. Incubation conditions for the removal of N-glycans from glycoproteins

Although N-glycosidase A de-glycosylates some glycoproteins in their native form (8), denaturation by using chaotropic salts increases the deglycosylation rate, considerably as shown by Tarentino and Plummer (9). They described the following incubation conditions for the complete deglycosylation of bovine pancreatic ribonuclease B and Fab\textsubscript{H}\textsubscript{9262} fragment of immunoglobulin M:

4 μg glycoprotein were treated with 1 μl N-glycosidase A in 10 mM sodium acetate buffer, 0.5 - 0.75 M NaSCN, 0.1 M 2-mercaptoethanol, pH 5.1, for 24 h at +37° C.

SDS 0.1% was also used successfully for deglycosylation instead of the chaotropic salt, but under this condition the enzyme was partially inactivated. Protease inhibitors like 10 mM EDTA (4), 4 mM PMSF (4) and 4 mM PefablocSC SC may be included in the deglycosylation mix and do not inhibit enzyme activity. Some cations such as Mg2+, Zn2+, Co2+ and Cu2+ increase the enzyme activity by as much as 50% and detergents like 2% Triton X-100 or 2% Tween 80 have also been used for the denaturation of glycoproteins prior to deglycosylation (4).

The extent and rate of deglycosylation of glycoproteins however depend to a high degree on the nature of the glycoprotein. Therefore no general instructions with regard to the incubation conditions can be given.

Changes to Previous Version

Editorial changes.

Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Pack size</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Protease Substrate</td>
<td>15 mg</td>
<td>11 080 733 001</td>
</tr>
<tr>
<td>N-Glycosidase F, recombinant</td>
<td>100 units</td>
<td>11 365 169 001</td>
</tr>
<tr>
<td>DIG Glycan Differentiation Kit</td>
<td>1 kit</td>
<td>11 210 238 001</td>
</tr>
<tr>
<td>Trypsin sequencing grade</td>
<td>4 × 25 μg</td>
<td>11 418 025 001</td>
</tr>
<tr>
<td></td>
<td>4 × 100 μg</td>
<td>11 418 033 001</td>
</tr>
<tr>
<td>Chymotrypsin sequencing grade</td>
<td>4 × 25 μg</td>
<td>11 418 467 001</td>
</tr>
<tr>
<td>Pepsin</td>
<td>1 g</td>
<td>10 108 057 001</td>
</tr>
</tbody>
</table>

References

* available from Roche Diagnostics

Trademarks

All third party product names and trademarks are the property of their respective owners.

Regulatory Disclaimer

For life science research only. Not for use diagnostic procedures.

Disclaimer of License

For patent license limitations for individual products please refer to: List of biochemical reagent products

Contact and Support

To ask questions, solve problems, suggest enhancements and report new applications, please visit our Online Technical Support Site.

To call, write, fax, or email us, visit sigma-aldrich.com, and select your home country. Country-specific contact information will be displayed.