Oxalic Acid Colorimetric Assay Kit

Catalog Number MAK179
Storage Temperature –20 °C

TECHNICAL BULLETIN

Product Description
Oxalic acid (Oxalate) is a strong dicarboxylic acid that occurs in several plants and vegetables. In animals, it is either incorporated from the diet or produced during ascorbic acid and glyoxylic acid metabolism. Oxalic acid is not metabolized and is excreted in the urine. Hence, it can act as a marker for glyoxylic and ascorbic acid metabolism. Furthermore, oxalic acid has been studied as a pathogenic factor for Sclerotinia sclerotiorum that inhibits the oxidative burst response in host plants. It is also known to alleviate chilling injury in peach fruit. Elevated levels of oxalic acid (oxalate) have been associated with the formation of kidney stones. Hence, oxalate measurements can be used for the diagnosis and monitoring of renal stones.

The Oxalic Acid Assay Kit provides a simple and sensitive procedure for measuring oxalic acid in variety of samples including animal and plant tissue. In this assay, oxalic acid concentration is determined by a coupled enzyme reaction, which results in a colorimetric (450 nm) product, proportional to the oxalate present.

Components
The kit is sufficient for 100 assays in 96 well plates.

- Oxalate Assay Buffer
 Catalog Number MAK179A
 25 mL

- Oxalate Developer Buffer
 Catalog Number MAK179B
 15 mL

- Oxalate Converter
 Catalog Number MAK179C
 0.2 mL

- Oxalate Enzyme Mix
 Catalog Number MAK179D
 1 vl

- Oxalate Probe
 Catalog Number MAK179E
 1 vl

- Oxalate Standard
 Catalog Number MAK179F
 1 vl

Reagents and Equipment Required but Not Provided.
- 96 well flat-bottom plate – It is recommended to use clear plates for colorimetric assays.
- Spectrophotometric multiwell plate reader
- Activated charcoal (>80 mesh)
- Mortar and pestle

Precautions and Disclaimer
This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions
Briefly centrifuge vials before opening. Use ultrapure water for the preparation of reagents. To maintain reagent integrity, avoid repeated freeze/thaw cycles.

Oxalate Assay and Oxalate Development Buffers – Allow buffers to come to room temperature before use.

Oxalate Converter – Aliquot and store protected from light at –20 °C. Use within two months.

Oxalate Enzyme Mix and Oxalate Probe – Reconstitute each with 220 μL of water. Mix well by pipetting. Aliquot each and store, protected from light, at –20 °C. Use within 2 months of reconstitution and keep on ice while in use.

Oxalate Standard – Reconstitute with 100 μL of water to generate 100 mM (100 nmole/μL) Oxalate Standard solution. Store protected from light at –20 °C. Use within 2 months of reconstitution and keep on ice while in use.

Storage/Stability
The kit is shipped on wet ice. Storage at –20 °C, protected from light, is recommended.
Procedure
All samples and standards should be run in duplicate.

Oxalate Standards for Colorimetric Detection
Dilute 10 μL of the 100 mM (100 nmole/μL) Oxalate Standard Solution with 990 μL of water to prepare a 1 mM (1 nmol/μL) standard solution. Add 0, 2, 4, 6, 8, and 10 μL of the 1 mM Oxalate standard solution into a 96 well plate, generating 0 (blank), 2, 4, 6, 8, and 10 nmol/well standards. Add Oxalate Assay Buffer to each well to bring the volume to 50 μL.

Sample Preparation
Plant tissue or fruits (~15 mg) should be ground in a pre-cooled mortar with pestle till a paste is formed. For the most effective extraction, tissue should be rapidly frozen in liquid nitrogen and ground with a pre-cooled mortar and pestle to form a paste or powder.

Plant tissue paste (or powder) or should then be rapidly homogenized in 150 μL of cold Oxalate Assay buffer. Incubate the homogenate for 10 minutes on ice and centrifuge at 10,000 × g for 5 minutes to remove insoluble material.

Animal tissue or cells should be homogenized directly in cold Oxalate Assay Buffer and centrifuged at 10,000 × g for 5 minutes to remove insoluble material.

Add 1–50 μL of the supernatant into a 96 well plate and bring the volume to 50 μL with Oxalate Assay Buffer.

Serum and other liquid samples can be directly added to the wells.

For unknown samples, it is suggested to test several sample dilutions to ensure the readings are within the linear range of the standard curve.

For urine samples, it is suggested to collect the sample (10 ml, 24 hours prior to testing) in a bottle containing 10 ml of 10 M hydrochloric acid. Centrifuge at 1,000 × g for 10 minutes and either use the supernatant immediately for analysis or store at −20 °C.

To reduce background in urine samples, it is recommended to purify the urine samples further by mixing 1 mL of urine with activated charcoal (25 mg) for 5 minutes at room temperature. Centrifuge at 10,000 × g for 5 minutes and use 10 μL of the supernatant for the assay.

Note: To correct for sample interference (e.g., urine sample), it is suggested to do samples in pairs. Estimate sample background by adding 4 μL of 1 mM Oxalate Standard to one of each sample pair as an internal standard (Sample\textsubscript{spiked}).

Conversion
Add 2 μL of Oxalate Converter to each Standard and Sample well. Mix and incubate at 37 °C for 1 hour.

Assay Reaction
1. Set up the Master Reaction Mix according to the scheme in Table 1. 50 μL of the Master Reaction Mix is required for each reaction (well).

Table 1.
MasterReaction Mix

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Samples and Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxalate Development Buffer</td>
<td>46 μL</td>
</tr>
<tr>
<td>Oxalate Enzyme Mix</td>
<td>2 μL</td>
</tr>
<tr>
<td>Oxalate Probe</td>
<td>2 μL</td>
</tr>
</tbody>
</table>

2. Add 50 μL of the Master Reaction Mix to each of the wells. Mix well using a horizontal shaker or by pipetting, and incubate the reaction for 60 minutes at 37 °C. Protect the plate from light during the incubation.

3. Measure the absorbance at 450 nm (A\textsubscript{450}).
Results

Calculations

The background for the assays is the value obtained for the 0 (blank) Oxalate Standard. Correct for the background by subtracting the 0 (blank) value from all readings. Background values can be significant and must be subtracted from all readings. Use the values obtained from the appropriate Oxalate standards to plot a standard curve.

Note: A new standard curve must be set up each time the assay is run.

Subtract the blank sample value from the sample reading to obtain the corrected measurement. Using the corrected measurement, the amount of Oxalate present in the sample may be determined from the standard curve.

Concentration of Oxalate (Non-spiked samples)

\[C (\mu M) = \frac{S_a}{S_v} \times \text{Sample Dilution Factor} \]

- \(S_a \) = Amount of Oxalate in unknown sample (nmole) from standard curve
- \(S_v \) = Sample volume (mL) added into the wells
- \(C \) = Concentration of Oxalate in sample

Oxalate Molecular Weight: 90.03 g/mole

Concentration of Oxalate (Spiked samples)

Note: For samples with interference, correct sample interference for the sample reading using the following equation:

\[S_a = \frac{(A_{450})_{\text{sample}}}{(A_{450})_{\text{sample spiked}} - (A_{450})_{\text{sample}}} \times 4 \text{ nmole} \]

- \(S_a \) = Amount of Oxalate in unknown sample (nmole)
- \((A_{450})_{\text{sample}} \) = absorbance reading for sample
- \((A_{450})_{\text{sample spiked}} \) = absorbance reading for spiked sample

References

Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Suggested Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay not working</td>
<td>Ice Cold Assay Buffer</td>
<td>Assay Buffer must be at room temperature</td>
</tr>
<tr>
<td></td>
<td>Omission of step in procedure</td>
<td>Refer and follow Technical Bulletin precisely</td>
</tr>
<tr>
<td></td>
<td>Plate reader at incorrect wavelength</td>
<td>Check filter settings of instrument</td>
</tr>
<tr>
<td></td>
<td>Type of 96 well plate used</td>
<td>For colorimetric assays, use clear plates</td>
</tr>
<tr>
<td>Samples with erratic</td>
<td>Samples prepared in different buffer</td>
<td>Use the Assay Buffer provided or refer to Technical Bulletin for instructions</td>
</tr>
<tr>
<td>readings</td>
<td>Cell/Tissue culture samples were incompletely homogenized</td>
<td>Repeat the sample homogenization, increasing the length and extent of homogenization step.</td>
</tr>
<tr>
<td></td>
<td>Samples used after multiple freeze-thaw cycles</td>
<td>Aliquot and freeze samples if samples will be used multiple times</td>
</tr>
<tr>
<td></td>
<td>Presence of interfering substance in the sample</td>
<td>If possible, dilute sample further</td>
</tr>
<tr>
<td></td>
<td>Use of old or inappropriately stored samples</td>
<td>Use fresh samples and store correctly until use</td>
</tr>
<tr>
<td>Lower/higher</td>
<td>Improperly thawed components</td>
<td>Thaw all components completely and mix gently before use</td>
</tr>
<tr>
<td>readings in samples and</td>
<td>Use of expired kit or improperly stored reagents</td>
<td>Check the expiration date and store the components appropriately</td>
</tr>
<tr>
<td>standards</td>
<td>Allowing the reagents to sit for extended times on ice</td>
<td>Prepare fresh Master Reaction Mix before each use</td>
</tr>
<tr>
<td></td>
<td>Incorrect incubation times or temperatures</td>
<td>Refer to Technical Bulletin and verify correct incubation times and temperatures</td>
</tr>
<tr>
<td>Incorrect volumes used</td>
<td></td>
<td>Use calibrated pipettes and aliquot correctly</td>
</tr>
<tr>
<td>Non-linear standard curve</td>
<td>Use of partially thawed components</td>
<td>Thaw and resuspend all components before preparing the reaction mix</td>
</tr>
<tr>
<td></td>
<td>Pipetting errors in preparation of standards</td>
<td>Avoid pipetting small volumes</td>
</tr>
<tr>
<td></td>
<td>Pipetting errors in the Reaction Mix</td>
<td>Prepare a Master Reaction Mix whenever possible</td>
</tr>
<tr>
<td></td>
<td>Air bubbles formed in well</td>
<td>Pipette gently against the wall of the tubes</td>
</tr>
<tr>
<td></td>
<td>Standard stock is at incorrect concentration</td>
<td>Refer to the standard dilution instructions in the Technical Bulletin</td>
</tr>
<tr>
<td></td>
<td>Calculation errors</td>
<td>Recheck calculations after referring to Technical Bulletin</td>
</tr>
<tr>
<td></td>
<td>Substituting reagents from older kits/lots</td>
<td>Use fresh components from the same kit</td>
</tr>
<tr>
<td>Unanticipated results</td>
<td>Samples measured at incorrect wavelength</td>
<td>Check the equipment and filter settings</td>
</tr>
<tr>
<td></td>
<td>Samples contain interfering substances</td>
<td>If possible, dilute sample further</td>
</tr>
<tr>
<td></td>
<td>Sample readings above/below the linear range</td>
<td>Concentrate or dilute samples so readings are in the linear range</td>
</tr>
</tbody>
</table>