Product Description

The Ghrelin EIA (Enzyme Immunoassay) Kit is an *in vitro* quantitative assay for detecting Ghrelin peptide based on the principle of competitive enzyme immunoassay. The microplate in the kit is pre-coated with anti-rabbit secondary antibody. After a blocking step and incubation of the plate with anti-Ghrelin antibody, both biotinylated Ghrelin peptide, and peptide standard or targeted peptide in samples interact competitively with the Ghrelin antibody. Uncompeted (bound) biotinylated Ghrelin peptide then interacts with Streptavidin-horseradish peroxidase (SA-HRP), which catalyzes a color development reaction. The intensity of colorimetric signal is directly proportional to the amount of biotinylated peptide-SA-HRP complex and inversely proportional to the amount of Ghrelin peptide in the standard or samples. This is due to the competitive binding to Ghrelin antibody between biotinylated Ghrelin peptide and peptides in standard or samples. A standard curve of known concentration of Ghrelin peptide can be established and the concentration of Ghrelin peptide in the samples can be calculated accordingly.

This kit (RAB0207) detects inactive Ghrelin (117 amino acids), not the acylated or active forms of Ghrelin.

Components

1. 96-well plate coated with secondary antibody (Item A) - RAB0207A: 96 wells (12 strips x 8 wells) coated with secondary antibody
2. 20x Wash Buffer (Item B) - RABWASH3: 25 mL
3. EIA Ghrelin Peptide standard, Lyophilized (Item C) - RAB0207C: 2 vials
4. Anti-Ghrelin Detection Antibody, Lyophilized (Item N) - RAB0207F: 2 vials
5. EIA Ghrelin 5x Assay Diluent B (Item E) – RABDIL10: Diluent for both standards and samples, including serum or plasma, cell culture media or other sample types
6. Biotinylated Ghrelin Peptide, Lyophilized (Item F) - RAB0207G: 2 vials
7. HRP-streptavidin (Item G) - RABHRP3: 600 µL of 100x concentrated HRP-conjugated Streptavidin.
8. Ghrelin Positive Control Sample, Lyophilized (Item M) - RAB0207K: 1 vial
9. TMB Substrate solution (Item H) - RABTMB2: 12 mL of 3,3',5,5'-tetramethylbenzidine (TMB) in buffered solution
10. Stop Solution (Item I) - RABSTOP2: 8 mL of 0.2 M sulfuric acid

Precautions and Disclaimer

This product is for Research Use Only. Not for Use in Diagnostic Procedures. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

For sample and positive control dilutions, refer to Preparation, steps 6, 7, 8, and 10.

1. Keep kit reagents on ice during reagent preparation steps. Equilibrate plate to room temperature before opening the sealed pouch.

2. 5x Assay Diluent B (Item E) should be diluted 5-fold with deionized or distilled water.
3. Briefly centrifuge the GHR Antibody vial (Item N) and reconstitute with 5 µL of water before use. Add 50 µL of 1x Assay Diluent B into the vial to prepare a detection antibody concentrate. Pipette up and down to mix gently.

4. The antibody concentrate should then be diluted 100-fold with 1x Assay Diluent B. This is the anti-Ghrelin antibody working solution, which will be used in Procedure, step 2.

Note: The following steps may be done during the antibody incubation procedure (Procedure, step 2).

5. Briefly centrifuge the vial of biotinylated Ghrelin peptide (Item F) and reconstitute with 20 µL of water before use. Add 5 µL of Item F to 5 mL of 1x Assay Diluent B. Pipette up and down to mix gently. The final concentration of biotinylated Ghrelin will be 10 ng/mL. This solution will only be used as the diluent in Preparation, step 6.

6. Preparation of Standards: Label 6 microtubes with the following concentrations: 1,000 ng/mL, 100 ng/mL, 10 ng/mL, 1 ng/mL, 100 pg/mL, and 0 pg/mL. Pipette 450 µL of biotinylated Ghrelin solution into each tube, except for the 1,000 ng/mL (leave this one empty).

Note: It is very important to make sure the concentration of biotinylated Ghrelin is 10 ng/mL in all standards.

- a. Briefly centrifuge the vial of standard Ghrelin peptide (Item C) and reconstitute with 10 µL of water. In the tube labeled 1,000 ng/mL, pipette 8 µL of Item C and 792 µL of 10 ng/mL biotinylated Ghrelin solution (Preparation, step 5). This is the Ghrelin stock solution (1,000 ng/mL Ghrelin and 10 ng/mL biotinylated Ghrelin). Mix thoroughly. This solution serves as the first standard.
- b. To make the 100 ng/mL standard, pipette 50 µL of Ghrelin stock solution into the tube labeled 100 ng/mL. Mix thoroughly.
- c. Repeat this step with each successive concentration, preparing a dilution series (see Figure 1). Each time, use 450 µL of biotinylated Ghrelin and 50 µL of the prior concentration until 100 pg/mL is reached. Mix each tube thoroughly before the next transfer.
- d. The final tube (0 pg/mL Ghrelin, 10 ng/mL biotinylated Ghrelin) serves as the zero standard (or total binding).

Figure 1.
Dilution Series for Standards
7. Prepare a 10-fold dilution of Item F. To do this, add 2 µL of Item F to 18 µL of the appropriate Assay Diluent. This solution will be used in Preparation, steps 8 and 10.

8. **Positive Control Preparation**: briefly centrifuge the positive control vial and reconstitute with 100 µL of water before use (Item M). To the tube of Item M, add 101 µL of 1x Assay Diluent B. Also add 2 µL of 10-fold diluted Item F (Preparation, step 7) to the tube. This is a 2-fold dilution of the positive control. Mix thoroughly. The positive control is a cell culture medium sample with an expected signal between 10–30% of total binding (70–90% competition) if diluted as described. It may be diluted further if desired, but be sure the final concentration of biotinylated Ghrelin is 10 ng/mL.

9. If Item B (20x Wash Concentrate) contains visible crystals, warm to room temperature and mix gently until dissolved. Dilute 20 mL of Wash Buffer Concentrate into deionized or distilled water to yield 400 mL of 1x Wash Buffer.

10. **Sample Preparation**: Use 1x Assay Diluent B plus biotinylated GHR to dilute samples, including serum/plasma, cell culture medium, and other sample types.

 Note: It is very important to make sure the final concentration of the biotinylated Ghrelin is 10 ng/mL in every sample. For example, to make a 4-fold dilution of sample, mix together 2.5 µL of 10-fold diluted Item F (Preparation, step 7), 185 µL of Assay Diluent B, and 62.5 µL of the sample; mix gently. The total volume is 250 µL, enough for duplicate wells on the microplate.

 Do not use Item F diluent from Step 5 for sample preparation.

 If undiluted samples are used, biotinylated Ghrelin must be added to a final concentration of 10 ng/mL. For example, add 2.5 µL of 10-fold diluted Item F to 247.5 µL of sample.

11. Briefly centrifuge the HRP-Streptavidin vial (Item G) before use. The HRP-Streptavidin concentrate should be diluted 100-fold with 1x Assay Diluent B.

Storage/Stability

Store the kit at −20 °C. It remains active for up to 1 year. Avoid repeated freeze-thaw cycles.

The reconstituted standard should be stored at −20 °C or −70 °C (−70 °C is recommended). Opened microplate strips or reagents may be stored for up to 1 month at 2–8 °C. Return unused wells to the pouch containing desiccant pack and reseal along entire edge.

Procedure

1. Keep kit reagents on ice during reagent preparation steps. It is recommended that all standards and samples be run at least in duplicate.

2. Add 100 µL of anti-Ghrelin antibody (see Preparation, step 3) to each well. Incubate for 1.5 hours at room temperature with gentle shaking (1–2 cycles/sec) or overnight at 4 °C.

3. Discard the solution and wash wells 4 times with 1x Wash Buffer (200–300 µL each). Washing may be done with a multichannel pipette or an automated plate washer. Complete removal of liquid at each step is essential to good assay performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.

4. Add 100 µL of each standard (see Preparation, step 6), positive control (see Preparation, step 8), and sample (see Preparation, step 10) into appropriate wells. Be sure to include a blank well (Assay Diluent only). Cover wells and incubate for 2.5 hours at room temperature with gentle shaking (1–2 cycles/sec) or overnight at 4 °C.

5. Discard the solution and wash 4 times as directed in step 3.

6. Add 100 µL of prepared HRP-Streptavidin solution (see Preparation, step 11) to each well. Incubate with gentle shaking for 45 minutes at room temperature. It is recommended that incubation time should not be shorter or longer than 45 minutes.

7. Discard the solution and wash 4 times as directed in step 3.

8. Add 100 µL of TMB One-Step Substrate Reagent (Item H) to each well. Incubate for 30 minutes at room temperature in the dark with gentle shaking (1–2 cycles/sec).

9. Add 50 µL of Stop Solution (Item I) to each well. Read absorbances at 450 nm immediately.
Results
Calculations
Calculate the mean absorbance for each set of duplicate standards, controls and samples, and subtract the blank optical density. Plot the standard curve using SigmaPlot software (or other software which can perform four-parameter logistic regression models), with standard concentration on the x-axis and percentage of absorbance (see calculation below) on the y-axis. Draw the best-fit straight line through the standard points.

Percentage absorbance =
\[(B - \text{blank OD})/(B_0 - \text{blank OD})\]

where
B = OD of sample or standard
B_0 = OD of zero standard (total binding)

Typical Data
Standard curve(s) is for demonstration only. Standard curve(s) must be run with each assay.

Product Profile
Sensitivity: The minimum detectable concentration of Ghrelin is 161 pg/mL or 100 pM.

Detection Range: 0.1–1,000 ng/mL

Reproducibility:
Intra-Assay: CV <10%
Inter-Assay: CV <15%

Specificity
Cross Reactivity: This kit shows no cross-reactivity with any of the cytokines tested: Nesfatin, Angiotensin II, NPY, and APC.

References
Appendix
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Inaccurate pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td></td>
<td>Improper standard dilution</td>
<td>Ensure a brief spin of Item C and dissolve the powder thoroughly with gentle mixing.</td>
</tr>
<tr>
<td>Low signal</td>
<td>Too brief incubation times</td>
<td>Ensure sufficient incubation time; Procedure, step 2 may change to overnight</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td></td>
<td>improper dilution</td>
<td></td>
</tr>
<tr>
<td>Large CV</td>
<td>Inaccurate pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td>High background</td>
<td>Plate is insufficiently washed</td>
<td>Review the manual for proper wash. If using a plate washer, check that all ports are unobstructed.</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Make fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the ELISA kit</td>
<td>Store the standard at $<-20^\circ C$ after reconstitution, others at $4^\circ C$. Keep substrate solution protected from light</td>
</tr>
<tr>
<td></td>
<td>Stop solution</td>
<td>Stop solution should be added to each well before measurement.</td>
</tr>
</tbody>
</table>

SA,Al,KCP,KH,MAM 08/18-1