Hydrophobic Chromatography Test Kits
MAA-8, DAA-8, PHE-5, PH2-5, PHE-10, PH2-10

Hydrophobic ligands can be utilized as bioselective adsorbents. Both ω-Aminoalkyl and alkyl agaroses may interact with regions of hydrophobicity inherent to most proteins.

We are providing a testing system that will be useful in designing purification protocols for individual proteins. Kit MAA-8 and DAA-8 include 8 different columns of discrete carbon lengths that will allow a researcher to quickly and easily identify which resin will most effectively purify the target protein. Kits (PHE-5 & PH2-5) containing individual hydrophobic resins are also available for protocol development.

Suggestions for use:

<table>
<thead>
<tr>
<th>Hydrophobic Conditions</th>
<th>Ionic Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Equilibration buffers: 0.01 M Tris-HCl pH 7.0-8.0 + (0.5–1.5 M NaCl or 1.0 M-2.0 M Ammonium Sulphate)</td>
<td>0.01 M Tris-HCl pH 7.0-8.0</td>
</tr>
</tbody>
</table>

[Other buffer salts may be substituted if the target protein is unstable in Tris buffer. Buffer additions are acceptable and at times essential for protein stability (i.e. Mercaptoethanol, EDTA).]

2) Elution buffers: equilibration buffer without NaCl or Ammonium Sulfate equilibration buffer + 0.5 M — 1.0 M NaCl or 1-2 M Ammonium Sulfate

[Specific eluants: High salt with the addition of hydrophobic solvents (i.e. ethylene glycol) or detergents]

3) Sample preparation:

A) Centrifugation — to eliminate particulates
 — minimize lipid or lipo-protein content (this will aid in resin cleaning and extend column life).

B) Concentration—between 1-10 mg/ml

C) Equilibration to column conditions
 - by dialysis
 - by desalting columns
 - by diafiltration
 - by dilution
Procedure: Recommended running temperature 3-8°C

1) Equilibrate each column used with 5-10 column volumes of the appropriate buffer for the target protein.

2) Load the protein solution on the column.

3) Wash the load into the column with a small volume (0.1-0.5 mls) of equilibration buffer.

4) Continue washing with equilibration buffer to remove unbound protein. Washing may require 3-10 column volumes for complete removal of free protein.

5) Elute bound protein with the chosen elution buffer [Note: Some proteins may require severe conditions to elute from the column. (i.e. 50% butanol/buffer solutions or 50% ethanol/buffer solutions)]

6) Assay elution fractions for the target protein.

7) Evaluate binding capacity vs total recovery to determine:

 A) maximum binding effectiveness for differing substitutions

 B) maximum recovery

 C) ease of recovery

 D) degree of purification

8) Regenerate the column as directed below.

Regeneration:

Wash the column with 10 column volumes of each:

1) 0.05 M NaOH
2) 0.1 M Acetate pH 4.5
3) Deionized water or distilled water.
4) 2.0 M NaCl

Storage:

Store column upright with both caps in place at 3-8°C. 0.01 to 0.02% Thimerosal may be added for long term storage. DO NOT FREEZE!
Trouble Shooting:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) irreversible binding</td>
<td>A) Proper choice of ligand length</td>
</tr>
<tr>
<td>B) Denaturing of target protein</td>
<td>B)i) Rapid post-column treatment (i.e. desalting columns, diafiltration or dialysis.)</td>
</tr>
<tr>
<td></td>
<td>ii) Utilizing a less hydrophobic column which would generally require less denaturing elution conditions.</td>
</tr>
</tbody>
</table>

SIGMA warrants that its products conform to the information contained in this and other Sigma publications. See reverse side of invoice or packing slip for additional terms and conditions of sale.