Product Information

MONOCLONAL ANTI-HIF-1α
CLONE OZ12
Purified Mouse Immunoglobulin

Product Number H 6411

Product Description
Monoclonal Anti-HIF-1α (Hypoxia Inducible Factor 1, α subunit) (mouse IgG1 isotype) is derived from the hybridoma produced by the fusion of mouse myeloma NS1 cells with splenocytes from mice immunized with amino acids 530-826 of the human HIF-1α protein. The antibody is purified by Protein A/Protein G chromatography.

Monoclonal Anti-HIF-1α recognizes the α subunit (120 kDa) of human HIF-1. It has been used in immunofluorescence, immunoprecipitation and gel supershift studies. It is not suitable for immunoblotting.

Hypoxia-inducible factor-1 (HIF-1) is a heterodimer composed of a 120 kDa HIF-1-α subunit complexed with a 91- to 94 kDa HIF-1-β subunit. The predicted 826-amino acid HIF-1-α contains a bHLH (basic helix-loop-helix)-PAS domain at its N-terminus. Northern blot and Western blot analyses indicated that HIF-1 mRNAs and proteins are induced in cells exposed to 1% oxygen and decay rapidly upon return of the cells to 20% oxygen.1,2

HIF-1 is a MOP1 member of the PAS superfamily of transcription factors. It plays a pivotal role in cellular adaptation to changes in oxygen availability, including the regulation of genes involved in energy metabolism, angiogenesis, and apoptosis. HIF-1 activates transcription of hypoxia-inducible genes, including those encoding: erythropoietin, vascular endothelial growth factor (VEGF), heme oxygenase-1 inducible nitric oxide synthase, and the glycolytic enzymes aldolase A, enolase 1, lactate dehydrogenase A, phosphofructokinase I, and phosphoglycerate kinase 1.3

The α subunits of HIF are rapidly degraded by the proteasome under normal conditions but are stabilized by hypoxia. Cobaltous ions or iron chelators mimic hypoxia, indicating that the stimuli may interact through effects on a ferroprotein oxygen sensor. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). In VHL-defective cells, HIF-α subunits were constitutively stabilized and HIF-1 was activated. The interaction between HIF-1 and VHL is iron dependent and is necessary for the oxygen-dependent degradation of HIF-α subunits. These findings suggest that constitutive HIF-1 activation may underlie the angiogenic phenotype of VHL-associated tumors.4,5

Hypoxia-induced HIF-1-α activates expression of the gene encoding NIP3, which in turn primes cells for apoptosis under conditions of persistent oxygen deprivation. This pathway may play a role in cell death resulting from cerebral and myocardial ischemia. Recent studies identified a conserved HIF-VHL-prolyl hydroxylase pathway in C. elegans with Egl9 as a dioxygenase as main regulators of HIF by prolyl hydroxylation. In mammalian cells, they showed that three proteins, PHD1, PHD2, and PHD3, represent the HIF-prolyl hydroxylases with a conserved 2-histidine-1-carboxylate-iron coordination motif at the catalytic site. Direct modulation of recombinant enzyme activity by graded hypoxia, iron chelation, and cobaltous ions mirrored the characteristics of HIF induction in vivo, fulfilling requirements for these enzymes being oxygen sensors that regulate HIF.6,7

Reagent
Monoclonal Anti-HIF-1α is supplied as a solution in phosphate buffered saline, pH 7.4, with 0.08% sodium azide as a preservative.

Precautions and Disclaimer
Due to the sodium azide content, a material safety data sheet (MSDS) for this product has been sent to the attention of the safety officer of your institution. Consult the MSDS for information regarding hazards and safe handling practices.

Storage/Stability
Store at –20 °C. Upon initial thawing freeze the solution in working aliquots for extended storage. Avoid repeated freezing and thawing to prevent denaturing the antibody. Do not store in a frost-free freezer. The antibody is stable for at least 12 months when stored appropriately. Working dilutions should be discarded if not used within 12 hours.
Product Profile
A recommended working concentration of 2 µg/mg of protein lysate is determined by immunoprecipitation using mammalian cells cultured under reduced CO₂ tension.

The recommended working concentration is 1 mg/ml for gel shift and 2 µg/ml for immunoflorescence.

Note: In order to obtain best results using different techniques and preparations we recommend determining optimal working concentration by titration.

References

AH 11/01