Anti-phospho- c-Met [pTyr1365]
Developed in Rabbit, Affinity Isolated Antibody

Product Number C 6865

Product Description
Anti-phospho-c-Met [pTyr1365] is developed in rabbit using a synthetic phosphorylated peptide derived from the region of c-Met that contains tyrosine 1365 as immunogen. The sequence is conserved in human, mouse and rat. The antiserum is affinity purified using epitope-specific affinity chromatography. The antibody is preadsorbed to remove any reactivity toward a non-phosphorylated c-Met peptide. The antibody specifically recognizes c-Met phosphorylated on tyrosine 1365.

The antibody detects human c-Met. Rat and mouse (100% homologous) have not been tested, but are expected to cross-react. **Note:** There are three isoforms of c-Met, two of which are recognized by this antibody. It has been used in immunoblotting applications.

Binding of scatter factor (SF)/hepatocyte growth factor (HGF) to the c-Met receptor tyrosine kinase (RTK) triggers receptor dimerization and phosphorylation on multiple residues within the juxtamembrane, catalytic core and cytoplasmic tail domains, thereby regulating receptor internalization, catalytic activity and multisubstrate docking. c-Met contains three tyrosines (Tyr-xx-x-Tyr-Tyr motif) within the activation loop of the catalytic domain. This is also seen with the insulin receptor, insulin-like growth factor receptor (IGF1R) and nerve growth factor (NGF) receptors/Trks, for which phosphorylation of all three tyrosines is required for full activation. Phosphorylation of tyrosine 1234 and 1235 of c-Met (and the related family member, RON) has been shown to be important in receptor activation. Activation of the c-Met receptor results in binding and/or phosphorylation of many intracellular signaling proteins including multiple adaptor proteins (e.g., Grb2, Shc, Cbl, Crk, cortactin, paxillin, and GAB1), and a variety of other signal transducers (e.g., PI 3-kinase, FAK, Src, ERK1&2, JNK1&2, PLC-α, and STAT3). Tyrosine 1349 of c-Met is one of the primary docking sites for PI 3-kinase and GAB1.

The phosphorylation of tyrosine 1365 has been shown to inhibit cell morphogenesis.

Reagent
The antibody is provided as a solution in phosphate buffer, pH 7.4, with 1.0 mg/ml BSA (IgG and protease free) and 0.05% sodium azide.

Precautions and Disclaimer
Due to the sodium azide content, a material safety data sheet (MSDS) for this product has been sent to the attention of the safety officer of your institution. Consult the MSDS for information regarding hazards and safe handling practices.

Storage/Stability
Store at -70°C. Upon initial thawing freeze the solution in working aliquots for extended storage. Avoid repeated freezing and thawing to prevent denaturing the antibody. Do not store in frost-free freezers. Working dilution samples should be discarded if not used within 12 hours. The antibody is stable for at least 12 months when stored appropriately.

Product Profile
The amount of supplied reagent is sufficient for 10 blots.

A recommended working concentration of 0.1 to 1.0 µg/mL is determined by immunoblotting using 293T kidney cells transiently transfected with human c-Met and stimulated with HGF.

Note: In order to obtain best results in different techniques and preparations we recommend determining optimal working concentration by titration test.

Results

Peptide Competition
1. Extracts prepared from 293T cells transiently transfected with human c-Met were resolved by SDS-PAGE on a 10% Tris-glycine gel, and transferred to PVDF.
2. Membranes, were incubated with a 5% BSA-TBST buffer overnight at 4 °C, in order to block non-specific sites.
3. Subsequently the membranes were incubated as follows:
 Lane 1 no peptide
 Lane 2 peptide containing generic phospho-
 tyrosine
 Lane 3 the non-phosphopeptide corresponding to the immunogen
 Lane 4 immunogen
4. All lanes were incubated with 0.50 µg/mL c-Met [pTyr\(^{1365}\)] antibody
5. After washing, membranes were incubated with goat F(ab')\(^2\) anti-rabbit IgG alkaline phosphatase and signals were detected.

The data in Figure 1 show that only peptide corresponding to the c-Met [pTyr\(^{1365}\)] site blocks the antibody signal, demonstrating the specificity of the c-Met [pTyr\(^{1365}\)] antibody.

References

Figure 1: Peptide competition