Product Information

EPHB1, Active mouse, recombinant GST-tagged, expressed in Sf9 cells

Catalog Number E7032
Lot Number 019K0645
Storage Temperature –70 °C

Synonyms: Elk; Net; Cek6; Elkh; Hek6; EPHT2; AW488255; 9330129L11

Product Description
EPHB1 is a member of the Eph family of receptor tyrosine kinases. Ligand-activated EPHB1 forms a signaling complex with Nck, paxillin, and focal adhesion kinase, and induces tyrosine phosphorylation of paxillin in a c-Src-dependent manner to promote cell migration. In addition, activated EPHB1 recruits the adaptor proteins Grb2 and p52Shc, and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. Expression of dominant-negative c-Src significantly reduced EPHB1-dependent ERK1/2 activation and chemotaxis.

This recombinant product was expressed by baculovirus in Sf9 insect cells using an N-terminal GST-tag. The gene accession number is NM 173447. It is supplied in 50 mM Tris-HCl, pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol.

Molecular mass: ∼62 kDa
Purity: ≥70% (SDS-PAGE, see Figure 1)
Specific Activity: 122–165 nmole/min/mg (see Figure 2)

Precautions and Disclaimer
This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability
The product ships on dry ice and storage at –70 °C is recommended. After opening, aliquot into smaller quantities and store at –70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.
SDS-PAGE Gel of Lot Number 019K0645: >90% (densitometry)

Figure 2.
Specific Activity of Lot Number 019K0645: 143 nmole/min/mg

Procedure

Preparation Instructions
Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/µl BSA and 5% glycerol solution.
Kinase Solution – Dilute the Active EPHB1 (0.1 µg/µl) with Kinase Dilution Buffer to the desired concentration. **Note:** The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended that the researcher perform a serial dilution of Active EPHB1 kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 µl aliquots at –20 °C.

γ-32P-ATP Assay Cocktail (250 µM) – Combine 5.75 ml of Kinase Assay Buffer, 150 µl of 10 mM ATP Stock Solution, 100 µl of γ-32P-ATP (1 mCi/100 µl). Store in 1 ml aliquots at –20 °C.

Substrate Solution – Dissolve the synthetic peptide substrate Poly(Glu:Tyr, 4:1) in water at a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the 32P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

1. Thaw the Active EPHB1, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ-32P-ATP Assay Cocktail may be thawed at room temperature.
2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 µl:
 - 10 µl of Kinase Solution
 - 5 µl of Substrate Solution
 - 5 µl of cold water (4 °C)
3. Set up a blank control as outlined in step 2, substituting 5 µl of cold water (4 °C) for the Substrate Solution.
4. Initiate each reaction with the addition of 5 µl of the γ-32P-ATP Assay Cocktail, bringing the final reaction volume to 25 µl. Incubate the mixture in a water bath at 30 °C for 15 minutes.
5. After the 15 minute incubation, stop the reaction by spotting 20 µl of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.
6. Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
7. Set up a radioactive control to measure the total γ-32P-ATP counts introduced into the reaction. Spot 5 µl of the γ-32P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. **Specific Radioactivity (SR) of ATP (cpm/nmole)**

 \[SR = \frac{cpm \text{ of } 5 \mu l \text{ of } \gamma-32P-ATP \text{ Assay Cocktail}}{nmole \text{ of ATP}} \]

 cpm – value from control (step 7)

 nmole – 1.25 nmole (5 µl of 250 µM ATP Assay Cocktail)

2. **Specific Kinase Activity (SA) (nmole/min/mg)**

 \[nmole/min/mg = \frac{\Delta \text{cpm} \times (25/20)}{SR \times E \times T} \]

 \[SR = \text{specific radioactivity of the ATP (cpm/nmole ATP)} \]

 \[\Delta \text{cpm} = \text{cpm of the sample – cpm of the blank (step 3)} \]

 \[25 = \text{total reaction volume} \]

 \[20 = \text{spot volume} \]

 \[T = \text{reaction time (minutes)} \]

 \[E = \text{amount of enzyme (mg)} \]

References

BKR,MAM 02/09-1

Sigma brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.