Product Information

PYK2 (360-690) Active human, recombinant His-tagged, expressed in Sf9 cells

Catalog Number K3768
Lot Number 019K0632
Storage Temperature –70 °C

Synonyms: FAK2; PTK2B; CADTK; FADK2; CAKB; PKB; PTK; RAFTK

Product Description
PYK2 (also known as FAK2/RAFTK) is a member of the focal adhesion PTK family. PYK2/FAK2 can be activated by a variety of extracellular signals that elevate intracellular calcium concentration and by stress signals. Unlike FAK, which is widely expressed in various tissues and links transmembrane integrin receptors to intracellular pathways, PYK2/FAK2 is expressed mainly in the central nervous system and in cells derived from hematopoietic lineages. In osteoclasts, although FAK is expressed, PYK2/FAK2 appears to be the predominant mediator of integrin alpha(v)beta3 signaling events that influence osteoclast physiology and pathology.

This recombinant product was expressed by baculovirus in Sf9 insect cells using an N-terminal His-tag. The gene accession number is NM 004103. It is supplied in 50 mM sodium phosphate, pH 7.0, 300 mM NaCl, 150 mM imidazole, 0.1 mM PMSF, 0.2 mM DTT, and 25% glycerol.

Molecular mass: ~39 kDa

Purity: ≥70% (SDS-PAGE, see Figure 1)

Specific Activity: 216–292 nmole/min/mg (see Figure 2)

Precautions and Disclaimer
This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Storage/Stability
The product ships on dry ice and storage at –70 °C is recommended. After opening, aliquot into smaller quantities and store at –70 °C. Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.
SDS-PAGE Gel of Lot Number 019K0632: >90% (densitometry)

Figure 2.
Specific Activity of Lot Number 019K0632: 254 nmole/min/mg

Procedure
Preparation Instructions
Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl2, 12.5 mM MnCl2 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/µl BSA solution.
Kinase Solution – Dilute the Active PYK2 (0.1 µg/µl) with Kinase Dilution Buffer to the desired concentration. **Note:** The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended that the researcher perform a serial dilution of Active PYK2 kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 µl aliquots at −20 °C.

γ-32P-ATP Assay Cocktail (250 µM) – Combine 5.75 ml of Kinase Assay Buffer, 150 µl of 10 mM ATP Stock Solution, 100 µl of γ-32P-ATP (1 mCi/100 µl). Store in 1 ml aliquots at −20 °C.

Substrate Solution – Dissolve the synthetic peptide substrate Poly (Glu:Tyr, 4:1) in water at a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay
This assay involves the use of the 32P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

1. Thaw the Active PYK2, Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ-32P-ATP Assay Cocktail may be thawed at room temperature.
2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 µl:
 - 10 µl of Kinase Solution
 - 10 µl of Substrate Solution
3. Set up a blank control as outlined in step 2, substituting 10 µl of cold water (4 °C) for the Substrate Solution.
4. Initiate each reaction with the addition of 5 µl of the γ-32P-ATP Assay Cocktail, bringing the final reaction volume to 25 µl. Incubate the mixture in a water bath at 30 °C for 15 minutes.
5. After the 15 minute incubation, stop the reaction by spotting 20 µl of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.
6. Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of −10 minutes each.
7. Set up a radioactive control to measure the total γ-32P-ATP counts introduced into the reaction. Spot 5 µl of the γ-32P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:
1. Specific Radioactivity (SR) of ATP (cpm/nmole)
 \[
 SR = \frac{\text{cpm of } 5 \mu l \text{ of } \gamma-32P-\text{ATP Assay Cocktail}}{\text{nmole of ATP}}
 \]
 \[
 \text{cpm – value from control (step 7)}
 \]
 \[
 \text{nmole – 1.25 nmole (5 } \mu l \text{ of 250 } \mu M \text{ ATP Assay Cocktail)}
 \]
2. Specific Kinase Activity (SA) (nmole/min/mg)
 \[
 \text{nmole/min/mg} = \frac{\Delta \text{cpm} \times (25/20)}{\text{SR} \times E \times T}
 \]
 \[
 \text{SR = specific radioactivity of the ATP (cpm/nmole ATP)}
 \]
 \[
 \Delta \text{cpm = cpm of the sample – cpm of the blank (step 3)}
 \]
 \[
 25 = \text{total reaction volume}
 \]
 \[
 20 = \text{spot volume}
 \]
 \[
 T = \text{reaction time (minutes)}
 \]
 \[
 E = \text{amount of enzyme (mg)}
 \]

References

BKR,MAM 06/09-1