SIGMA QUALITY CONTROL TEST PROCEDURE

Enzymatic Assay of ACYL COENZYME A SYNTHETASE (EC 6.2.1.3)

PRINCIPLE:

CoA + Oleate + ATP → Oleoyl-CoA + AMP + PP_{i}

ATP + AMP → ADP

2 ADP + 2 Phospho(enol)pyruvate → 2 ATP + 2 Pyruvate

2 Pyruvate + 2 β-NADH → 2 L-Lactate + 2 β-NAD

Abbreviations used:

ATP = Adenosine 5'-Triphosphate
AMP = Adenosine 5'-Monophosphate
ADP = Adenosine 5'-Diphosphate
Oleoyl-CoA = Oleoyl Coenzyme A
PP_{i} = Inorganic Pyrophosphate
β-NADH = β-Nicotinamide Adenine Dinucleotide, Reduced Form
β-NAD = β-Nicotinamide Adenine Dinucleotide, Oxidized Form
CoA = Coenzyme A
MK = Myokinase
LDH = L-Lactic Dehydrogenase

CONDITIONS: T = 25°C, pH = 8.1, A_{340nm}, Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

A. 200 mM Tris Buffer with 20 mM Magnesium Chloride, 2 mM Ethylenediaminetetraacetic Acid (EDTA) and 0.25% (w/v) Triton X-100, pH 8.1 at 25°C

(Prepare 100 ml in deionized water using Trizma Base, Sigma Prod. No. T-1503, Magnesium Chloride, Hexahydrate, Sigma Prod. No. M-0250, Ethylenediaminetetraacetic Acid, Disodium Dihydrate, Sigma Stock No. ED2SS, and Triton X-100, Sigma Stock No. X-100. Adjust to pH 8.1 at 25°C with 1 M HCl.)
Enzymatic Assay of ACYL COENZYME A SYNTHETASE
(EC 6.2.1.3)

REAGENTS: (continued)

B. 100 mM Tris Solution, pH 7.5 at 25°C
 (Prepare 100 ml in deionized water using Trizma Base, Sigma Prod. No. T-1503. Adjust to pH 7.5 at 25°C with 1 M HCl.)

C. 14.5 mM Adenosine 5'-Triphosphate Solution (ATP)
 (Prepare 1 ml in Reagent B using Adenosine 5'-Triphosphate, Disodium Salt, Sigma Prod. No. A-5394. PREPARE FRESH.)

D. 42.7 mM Phospho(enol)pyruvate Solution (PEP)
 (Prepare 1 ml in Reagent B using Phospho(enol)Pyruvate, Trisodium Salt, Hydrate, Sigma Prod. No. P-7002. PREPARE FRESH.)

E. Myokinase Enzyme Solution (MK)
 (Immediately before use, prepare a solution containing 72 units/ml in cold Reagent B using Myokinase², Sigma Prod. No. M-3003.)

F. PK/LDH Mixed Enzymes³ (PK/LDH)
 (Immediately before use, prepare a solution containing 120 units/ml of Pyruvate Kinase in Reagent B using PK²/LDH² Enzymes Suspension, Sigma Stock No. 40-7.)

G. 49 mM Coenzyme A (CoA)
 (Prepare 1 ml in Reagent B using Coenzyme A, Sodium Salt, Sigma Prod. No. C-3144. PREPARE FRESH.)

H. 5.3 mM β-Nicotinamide Adenine Dinucleotide, Reduced Form Solution (β-NADH)
 (Dissolve the contents of one 10 mg vial of β-Nicotinamide Adenine Dinucleotide, Reduced Form, Disodium Salt, Sigma Stock No. 340-110, in the appropriate volume of deionized water or prepare 5 ml in deionized water using β-Nicotinamide Adenine Dinucleotide, Reduced Form, Disodium Salt, Sigma Prod. No. N-8129. PREPARE FRESH.)

I. 0.25% (v/v) Triton X-100
 (Prepare 20 ml in deionized water using Triton X-100, Sigma Stock No. X-100.)

J. 0.98 mM Sodium Oleate Solution (Oleate)
 (Prepare 10 ml in Reagent I using Oleic Acid, Sodium Salt, Sigma Prod. No. 0-7501. PREPARE FRESH.)
Enzymatic Assay of ACYL COENZYME A SYNTHETASE (EC 6.2.1.3)

REAGENTS: (continued)

K. 50 mM Tris Solution, pH 7.5 at 25°C (Enzyme Diluent)
(Prepare 100 ml in deionized water using Trizma Base, Sigma Prod. No. T-1503. Adjust to pH 7.5 at 25°C with 1 M HCl.)

L. Acyl Coenzyme A Synthetase Enzyme Solution
(Immediately before use, prepare a solution containing 0.05 - 0.25 unit/ml of Acyl Coenzyme A Synthetase in cold Reagent K.)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent A (Buffer)</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Reagent C (ATP)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Reagent D (PEP)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Reagent E (Mk)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Reagent F (PK/LDH)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Reagent G (CoA)</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Reagent H (β-NADH)</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Mix by inversion and equilibrate to 25°C. Monitor the A_{340nm} until constant, using a suitably thermostatted spectrophotometer. Then add:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent L (Enzyme Solution)</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Mix by inversion and monitor the A_{340nm} until constant, using a suitably thermostatted spectrophotometer. Then add:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent K (Enzyme Diluent)</td>
<td>------</td>
<td>0.20</td>
</tr>
<tr>
<td>Reagent J (Oleate)</td>
<td>0.20</td>
<td>------</td>
</tr>
</tbody>
</table>

Immediately mix by inversion and record the decrease in A_{340nm} for approximately 15 minutes. Obtain the ΔA_{340nm}/minute using the maximum linear rate for both the Test and Blank.
Enzymatic Assay of ACYL COENZYME A SYNTHETASE
(EC 6.2.1.3)

CALCULATIONS:

\[
\text{Units/ml enzyme} = \frac{(\Delta A_{340\text{nm}}/\text{min Test} - \Delta A_{340\text{nm}}/\text{min Blank})(2.8)(df)}{(2)(6.22)(0.2)}
\]

2.8 = Total volume (in milliliters) of assay
df = Dilution factor
6.22 = Millimolar extinction coefficient of β-NADH at 340 nm
0.2 = Volume (in milliliter) of enzyme used

\[
\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}
\]

\[
\text{Units/mg protein} = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}
\]

UNIT DEFINITION:

One unit will form 1.0 μmole of AMP and oleoyl-CoA from ATP and oleate per minute at pH 8.1 at 25°C, in the presence of CoA.

FINAL ASSAY CONCENTRATIONS:

In a 2.80 ml reaction mix, the final concentrations are 157 mM Tris, 14 mM magnesium chloride, 1.4 mM ethylenediaminetetraacetic acid, 0.18% (v/v) Triton X-100, 0.26 mM adenosine 5’-triphosphate, 0.76 mM phospho(enol)pyruvate, 4 units myokinase, 6 units pyruvate kinase, 9 units lactic dehydrogenase, 1.8 mM coenzyme A, 0.19 mM β-nicotinamide adenine dinucleotide, reduced form, 0.07 mM oleate and 0.01 - 0.05 unit acyl coenzyme A synthetase.

REFERENCES:

Enzymatic Assay of ACYL COENZYME A SYNTHETASE
(EC 6.2.1.3)

NOTES:

1. Triton is a registered trademark of Union Carbide Chemicals and Plastics Co., Inc.

2. Myokinase Unit Definition: One unit will convert 2.0 µmoles of ADP to ATP and AMP per minute at pH 7.6 at 37°C.

3. Contains not less than 700 units/ml of Pyruvate Kinase and 1000 units/ml of Lactic Dehydrogenase.

4. Pyruvate Kinase Unit Definition: One unit will convert 1.0 µmole of phospho(enol)pyruvate to pyruvate per minute at pH 7.6 at 37°C.

5. L-Lactic Dehydrogenase Unit Definition: One unit will reduce 1.0 µmole of pyruvate to L-lactate per minute at pH 7.5 at 37°C.

6. This assay is based on the cited reference.

7. All product and stock numbers, unless otherwise indicated, are Sigma product and stock numbers.

Sigma warrants that the above procedure information is currently utilized at Sigma and that Sigma products conform to the information in Sigma publications. Purchaser must determine the suitability of the information and products for its particular use. Upon purchase of Sigma products, see reverse side of invoice or packing slip for additional terms and conditions of sale.