SIGMA QUALITY CONTROL TEST PROCEDURE

Enzymatic Assay of ALCOHOL DEHYDROGENASE, NADP⁺ DEPENDENT (EC 1.1.1.2)

PRINCIPLE:

2-Propanol + β-NADP Alcohol Dehydrogenase → Acetone + β-NADPH

Abbreviations used:

β-NADP = β-Nicotinamide Adenine Dinucleotide Phosphate, Oxidized Form
β-NADPH = β-Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form

CONDITIONS: T = 40°C, pH = 7.8, A₃₄₀nm, Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

A. 100 mM Tris HCl Buffer, pH 7.8 at 40°C
 (Prepare 100 ml in deionized water using Trizma Hydrochloride, Sigma Prod. No. T-3253.
 Adjust to pH 7.8 at 40°C with 1 M NaOH.)

B. 15 mM β-Nicotinamide Adenine Dinucleotide Phosphate Solution (β-NADP)
 (Prepare 2.5 ml in Reagent A using β-Nicotinamide Adenine Dinucleotide Phosphate, Sodium Salt, Sigma Prod. No. N-0505 or dissolve the contents of one 10 mg vial of β-Nicotinamide Adenine Dinucleotide Phosphate, Sodium Salt, Sigma Stock No. 240-310, in an appropriate volume of Reagent A. PREPARE FRESH.)

C. 1.5 M 2-Propanol Solution (2-Prop)
 (Prepare 10 ml in Reagent A using Isopropanol, Anhydrous, Sigma Stock No. 405-7.)

D. Alcohol Dehydrogenase, NADP⁺ Dependent Enzyme Solution
 (Immediately before use, prepare a solution containing 0.10 - 0.40 unit/ml of Alcohol Dehydrogenase, NADP⁺ Dependent in cold Reagent A.)
Enzymatic Assay of ALCOHOL DEHYDROGENASE, NADP⁺ DEPENDENT
(EC 1.1.1.2)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent A (Buffer)</td>
<td>2.40</td>
<td>2.60</td>
</tr>
<tr>
<td>Reagent B (β-NADP)</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Reagent C (2-Prop)</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Mix by inversion and equilibrate to 40°C. Monitor the A_{340nm} until constant, using a suitably thermostatted spectrophotometer. Then add:

Reagent D (Enzyme Solution) 0.20

Immediately mix by inversion and record the increase in A_{340nm} for approximately 5 minutes. Obtain the ΔA_{340nm}/minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

\[
\text{Units/ml enzyme} = \frac{(\Delta A_{340nm}/min \text{ Test} - \Delta A_{340nm}/min \text{ Blank})(3)(df)}{(6.22)(0.2)}
\]

3 = Total volume (in milliliters) of assay
df = Dilution factor
6.22 = Millimolar extinction coefficient of β-NADPH at 340 nm
0.2 = Volume (in milliliter) of enzyme used

\[
\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}
\]

\[
\text{Units/mg protein} = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}
\]

UNIT DEFINITION:

One unit will oxidize 1.0 μmole of 2-propanol to acetone per minute at pH 7.8 at 40°C in the presence of β-NADP⁺.
Enzymatic Assay of ALCOHOL DEHYDROGENASE, NADP⁺ DEPENDENT
(EC 1.1.1.2)

FINAL ASSAY CONCENTRATION:

In a 3.00 ml reaction mix, the final concentrations are 100 mM Tris, 0.5 mM β-nicotinamide adenine dinucleotide phosphate, 150 mM 2-propanol and 0.02 - 0.08 unit alcohol dehydrogenase, β-NADP⁺ dependent.

REFERENCES:

NOTES:

1. This assay is based on the cited references.
2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that Sigma products conform to the information in Sigma publications. Purchaser must determine the suitability of the information and products for its particular use. Upon purchase of Sigma products, see reverse side of invoice or packing slip for additional terms and conditions of sale.