SIGMA QUALITY CONTROL TEST
PROCEDURE

Enzymatic Assay of XYLANASE Activity in DRISSELASE
(EC 3.2.1.8)
Sigma Prod. No. D-9515

PRINCIPLE:
Xylan + H₂O → Reducing Sugar (measured as glucose)

CONDITIONS: T = 37°C, pH = 4.5, A₄₁₀nm, Light path = 1 cm

METHOD: Colorimetric

REAGENTS:

A. 100 mM Sodium Acetate Buffer, pH 4.5 at 37°C
 (Prepare 50 ml in deionized water using Sodium Acetate, Trihydrate, Sigma Prod. No. S-8625. Adjust to pH 4.5 at 37°C with 5 M HCl.)

B. 2.5% (w/v) Xylan Substrate solution (Xylan)
 (Prepare 15 ml in Reagent A using Xylan, Sigma Prod. No. X-0502.)

C. Driselase (Xylanase) Enzyme Solution
 (Immediately before use, prepare a solution containing 0.075 – 0.15 units/ml of Xylanase in cold deionized water.)

D. 500 mM Sodium Hydroxide Solution
 (Prepare 200 ml using deionized water and Sodium Hydroxide (1.0 N) Sigma Stock No. 930-65.)

E. 0.5% (w/v) p-Hydroxybenzoic Acid Hydrazide Solution (PAHBAH)
 (Prepare 200 ml in Reagent D using p-Hydroxybenzoic Acid Hydrazide, Sigma Prod. No. H-9882. PREPARE FRESH BEFORE USE.)

F. 0.2 mg/ml Glucose Standard Solution (Glucose Std)
 (Prepare by diluting Glucose Standard Solution, Sigma Stock No. 14-11, with deionized water.)
Enzymatic Assay of XYLANASE Activity in DRISELASE (EC 3.2.1.8)
Sigma Prod. No. D-9515

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable containers:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deionized Water</td>
<td>-----</td>
<td>1.00</td>
</tr>
<tr>
<td>Reagent A (Buffer)</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Reagent B (Xylan)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Mix by swirling and equilibrate to 37°C. Then add:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent C (Enzyme Solution)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Mix by swirling and incubate at 37°C for exactly 60 minutes.

Pipette (in milliliters) the following reagents into suitable test tubes:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
<th>Std 1</th>
<th>Std 2</th>
<th>Std 3</th>
<th>Std 4</th>
<th>Std 5</th>
<th>Std Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deionized water</td>
<td>0.97</td>
<td>0.97</td>
<td>0.95</td>
<td>0.90</td>
<td>0.80</td>
<td>0.60</td>
<td>0.40</td>
<td>1.00</td>
</tr>
<tr>
<td>Test Solution</td>
<td>0.03</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Blank Solution</td>
<td>-----</td>
<td>0.03</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Reagent F (Std)</td>
<td>-----</td>
<td>-----</td>
<td>0.05</td>
<td>0.10</td>
<td>0.20</td>
<td>0.40</td>
<td>0.60</td>
<td>-----</td>
</tr>
<tr>
<td>Reagent E (PAHBAH)</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Immediately mix by swirling and transfer the tubes to a boiling water bath. Incubate for 5 minutes. Remove the tubes from the boiling water bath and allow to cool to room temperature.

Mix by inversion and transfer the solutions to suitable cuvettes. Obtain the A_{410nm} for the Test, Blank, and Standards using a suitable spectrophotometer.

CALCULATIONS:

Standard Curve:

\[\Delta A_{410nm} \text{ Std} = A_{410nm} \text{ Std} - A_{410nm} \text{ Std Blank} \]

Prepare a standard curve by plotting the ΔA_{410nm} Standard vs the milligrams of Glucose.

Sample Determination:

\[\Delta A_{410nm} \text{ Sample} = A_{410nm} \text{ Test} - A_{410nm} \text{ Blank} \]

Determine the milligrams of glucose using the standard curve.

\[
\text{Units/ml enzyme} = \frac{(\text{milligrams of glucose liberated})(5)(df)}{(60)(1)(0.03)}
\]
Enzymatic Assay of Xylanase Activity in DRISELASE
(EC 3.2.1.8)
Sigma Prod. No. D-9515

CALCULATIONS: (continued)

5 = Volume (in milliliters) of assay
df = Dilution factor
60 = Time of assay (in minutes) as per Unit Definition
1 = Volume (in milliliters) of enzyme used
0.03 = Volume (in milliliter) used for reducing sugar determination

\[
\text{Units/mL enzyme} = \frac{\text{units/mL enzyme}}{\text{mg solid/mL enzyme}}
\]

\[
\text{Units/mg solid} = \frac{\text{units/mL enzyme}}{\text{mg solid/mL enzyme}}
\]

\[
\text{Units/mg protein} = \frac{\text{units/mL enzyme}}{\text{mg protein/mL enzyme}}
\]

UNIT DEFINITION:

One unit will liberate 1.0 milligram of reducing sugar from xylan (measured as glucose) per minute at pH 4.5 at 37°C.

FINAL ASSAY CONCENTRATIONS:

In a 5.00 ml reaction mix, the final concentrations are 60 mM sodium acetate, 0.50% (w/v) xylan and 0.075 - 0.15 unit xylanase.

REFERENCE:

NOTES:

1. This assay is based on the cited references.

2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that all Sigma-Aldrich, Inc. products conform to the information in this and other Sigma-Aldrich, Inc. publications. Purchaser must determine the suitability of the information and product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.