Determination of the Concentration and Molecular Weight of FRUCTOSE-1,6-DIPHOSPHATE

PROCEDURE:

F-1,6-P₂ Aldolase GAP + DAP

GAP TPI DAP

DAP + \$\mathbb{G}-NADH \frac{a-Glycerophosphate Dehydrogenase}{a-GOP + \mathbb{G}-NAD}

Abbreviations used:
F-1,6-P₂ = Fructose-1,6-Diphosphate
GAP = DL-Glyceraldehyde 3-Phosphate
DAP = Dihydroxyacetone Phosphate Dihydroxyacetone
TPI = Triosephosphate Isomerase
\$\mathbb{G}-NADH = \mathbb{G}-Nicotinamide Adenine Dinucleotide, Reduced Form
\$\mathbb{G}-NAD = \mathbb{G}-Nicotinamide Adenine Dinucleotide, Oxidized Form

CONDITIONS: T = 25°C, pH 7.6, A_{340nm} , Light path = 1 cm

METHOD: Spectrophotometric

a-GOP = L-a-Glycerophosphate

REAGENTS:

- A. 400 mM Triethanolamine Buffer, pH 7.6 at 25°C (TEA) (Prepare 100 ml in deionized water using Triethanolamine, Hydrochloride, Prod. No. T-1502. Adjust to pH 7.6 at 25°C with 1 M NaOH.)
- B. Fructose-1,6-Diphosphate Solution $(F-1,6-P_2)$ (Weigh two samples accurately, approximately 1.5 mg, and dissolve each in 25.0 ml of deionized water.)
- C. 4.2 mM ß-Nicotinamide Adenine Dinucleotide, Reduced Form Solution (ß-NADH) (Prepare 10 ml in Reagent A using ß-Nicotinamide Adenine Dinucleotide, Reduced Form, Disodium Salt, Prod. No. N-8129.)

Revised: 01/21/94 Page 1 of 3

Determination of the Concentration and Molecular Weight of FRUCTOSE-1,6-DIPHOSPHATE

REAGENTS: (continued)

- D. a-Glycerophosphate Dehydrogenase-Triosephosphate Isomerase Enzyme Solution (a-GDH/TPI) (Prepare a solution containing approximately 250 - 500 units/ml of TPI activity with a-Glycerophosphate Dehydrogenase-Triosephosphate Isomerase, Prod. No. G-1881 in cold Reagent A.)
- E. Aldolase Enzyme Solution (Prepare a solution containing approximately 20 units/ml of Aldolase, Type IV from Rabbit Muscle, Prod. No. A-1893, in cold Reagent A.)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

	<u>Test</u>	<u>Blank</u>
Reagent A (TEA)	1.50	1.60
Reagent B $(F-1,6-P_2)$	1.00	
Reagent C (S-NADH)	0.10	
Reagent D (a-GDH/TPI)	0.01	0.01
Deionized Water	0.40	1.40

Mix by inversion and obtain the $A_{340\text{nm}}$ using a suitable thermostatted spectrophotometer at 25°C. Then add:

Mix by inversion and allow the reaction to proceed for 5 minutes. Upon completion of the reaction record the $A_{340\text{nm}}$ and calculate the $?A_{340\text{nm}}$ and apparent molecular weight.

$$\Delta A = A_i \frac{3.01}{3.02} - A_f$$

 A_i = Initial absorbance A_f = Final absorbance

Revised: 01/21/94 Page 2 of 3

Determination of the Concentration and Molecular Weight of FRUCTOSE-1,6-DIPHOSPHATE

CALCULATIONS: (continued)

micromoles
$$F$$
 - 1,6 - P_2 /weighed sample = $\frac{\Delta A \times 3.02 \times 25}{(6.22)(2)}$

3.02 = Total volume of Reaction Mixture

25 = Dilution factor

6.22 = Millimolar extinction coefficient of $\Re-NADH$ at 340 nm

2 = Number of moles of a-glycerophosphate per mole of fructose-1,6- P_2 /weighed sample

Apparent molecular weight = $\frac{mg \ sample \ weighed \ x \ 1000}{mnoles \ F - 1,6 - P_2/weighed \ sample}$

FINAL ASSAY CONCENTRATION:

In a 3.02 ml reaction mix, the final concentrations are 215 mM TEA, 0.14 mM $\&Bar{M}$ -NADH, 0.2 units aldolase and 2.5 - 5.0 units a-GDH/TPI.

REFERENCE:

(1974) Method of Enzymatic Analysis, 2nd ed., vol. 3, 1314

NOTES:

1. All products and stock numbers, unless otherwise indicated, are Sigma product and stock numbers.

This procedure is for informational purposes. For a current copy of Sigma's quality control procedure contact our Technical Service Department.

Revised: 01/21/94 Page 3 of 3