Enzymatic Assay of GLYCOGEN SYNTHASE KINASE 3B

PRINCIPLE:

\[
\text{PI-2} + \gamma^{32}\text{P-ATP} \xrightarrow{\text{GSK}} \gamma^{32}\text{P}-\text{Phosphorylated PI-2} + \text{ADP}
\]

Abbreviations used:
- PI-2 = Phosphatase Inhibitor-2
- \(\gamma^{32}\text{P}-\text{ATP}\) = Adenosine 5'-Triphosphate \(\gamma^{32}\text{-P label}\)
- GSK = Glycogen Synthase Kinase 3B
- ADP = Adenosine 5'-Triphosphate

CONDITIONS: \(T = 30^\circ\text{C}, \ \text{pH} = 7.5\)

METHOD: Radioactive

REAGENTS:

A. 20 mM Tris HCl Buffer, pH 7.5 at Room Temperature (Enz Dil)
 (Prepare 10 ml in deionized water using Trizma Base, Sigma Prod. No. T-1503. Adjust to pH 7.5 at room temperature using 1 M HCl.)

B. \(\gamma^{32}\text{P}-\text{Adenosine 5'-Triphosphate Solution (}\gamma^{32}\text{-P-ATP)}\)
 (Use product with a specific activity of 3000 curies/mmol.)

C. 80 mM Tris HCl Buffer, with 40 mM Magnesium Chloride, 20 mM Dithiothreitol and 0.8 mM Adenosine 5'-Triphosphate, pH 7.5 at room temperature (4X Reaction Buffer)

D. 10 mM Sodium Pyrophosphate Solution
 (Prepare 200 ml in deionized water using Sodium Pyrophosphate, Disodium Salt, Anhydrous, Sigma Prod. No. P-8135.)
Enzymatic Assay of GLYCOGEN SYNTHASE KINASE 3B

REAGENTS:

E. 10% (w/v) Trichloracetic Acid Solution (TCA Wash Solution)
(Prepare 200 ml in Reagent D using Trichloroacetic Acid, 6.1 N Solution, approximately 100%
(w/v), Sigma Stock No. 490-10.)

F. Chromatography Paper
(Using Whatman 3 mm chromatography paper, cut into 1 x 2 cm squares.)

G. Phosphatase Inhibitor-2 Solution (PI-2)
(Immediately before use, reconstitute a 100 µg vial of Phosphastase Inhibitor-2, Sigma Prod.
No. P-8218, with 200 µl of deionized water. Determine protein concentration by the Bradford
method. Dilute to 0.5 mg/ml.)

H. Glycogen Synthase Kinase 3B Enzyme Solution
(Immediately before use, reconstitute a vial with 100 µl of deionized water. Further dilute 5
fold in Reagent A a final concentration of 400 units/ml.)

PROCEDURE:

Pipette (in milliliters) the following reagents with suitable containers:

<table>
<thead>
<tr>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent H (Enzyme Solution)</td>
<td>0.005</td>
</tr>
<tr>
<td>Reagent A (Enz Dil)</td>
<td>------</td>
</tr>
<tr>
<td>Reagent G (PI-2)</td>
<td>0.01</td>
</tr>
<tr>
<td>Reagent C (4x Reaction Buffer)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Vortex gently for a few seconds and incubate for 10 minutes at 30°C.

Remove a 0.015 ml aliquot from both the Test and Blank reaction mixture and place on Reagent F
(1 x 2 cm chrom. paper). Soak the paper rectangles in Reagent E (TCA Wash Solution) at room
temperature for 15 minutes. Wash the paper rectangles 4 times with Reagent E. Each wash should
consist of 10 ml of Reagent E per paper rectangle. Agitate gently throughout each wash for 15
minutes. This is then followed by a single wash with ethanol and another wash with acetone.
Enzymatic Assay of GLYCOGEN SYNTHASE KINASE 3B

Dry the paper pieces at room temperature or under a lamp. Then count the radioactivity that has been incorporated into precipitated phosphatase inhibitor-2 using the Cerenkov mode (i.e. count the β-emission without scintillation fluid using the ³H channel.)

CALCULATIONS:

1. Count \(R \), the radioactivity of 5 µl of the 4X Reaction Buffer, in order to obtain the total radioactivity in cpm per assay tube (perform in duplicate).

2. Divide the above value (\(R \)) by the amount of ATP present in the assay tube (4000 pmol), in order to obtain the specific radioactivity, \(\text{SR} \). \(\text{SR} = \frac{R}{4000} \text{ cpm/pmol.} \)

3. Subtract the blank value from the count of the sample and multiply the result by a factor of 4/3 (to adjust for aliquots taken from the reaction) in order to obtain the total counts per reaction \(C \).
\[
C = (C \text{ sample} - C \text{ blank}) \times \frac{4}{3}
\]

\[
\text{Units/ml} = \frac{(C)(\text{df})}{(\text{SR})(10)(0.005)}
\]

\(\text{df} = \) Dilution factor
10 = Conversion factor to convert to a one minute rate.
0.005 = Volume (in milliliters) of enzyme used

\[
\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}
\]

UNIT DEFINITION:

One unit will transfer one pmol of phosphate from ATP to phosphatase inhibitor 2 per minute at pH 7.5 at 30°C.

FINAL ASSAY CONCENTRATION:

In a 0.020 ml reaction mix, the final concentrations are 25 mM Tris, 10 mM magnesium chloride, 5 mM DL-dithiothreitol, 0.2 mM adenosine 5-triphosphate, 5 µg phosphatase inhibitor P-2 and 2 units glycogen synthase kinase 3B.

REFERENCES:

Enzymatic Assay of GLYCOGEN SYNTHASE KINASE 3B

NOTES:

1. This assay is based on the cited references.

2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that Sigma products conform to the information in Sigma publications. Purchaser must determine the suitability of the information and products for its particular use. Upon purchase of Sigma products, see reverse side of invoice or packing slip for additional terms and conditions of sale.