SIGMA QUALITY CONTROL TEST
PROCEDURE

Enzymatic Assay of LIPOPROTEIN LIPASE
(EC 3.1.1.34)

PRINCIPLE:

\[\text{PNPB} + \text{H}_2\text{O} \xrightarrow{\text{LPL}} \text{p-Nitrophenol} + \text{Butyric Acid} \]

Abbreviations used:
PNPB = p-Nitrophenyl Butyrate
LPL = Lipoprotein Lipase

CONDITIONS: \(T = 37^\circ\text{C}, \text{pH} = 7.2, A_{400\text{nm}}, \text{Light path} = 1\,\text{cm} \)

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

A. 100 mM Sodium Phosphate Buffer with 150 mM Sodium Chloride and 0.5% (v/v) Triton1 X-100, pH 7.2 at 37\textdegree C.
 (Prepare 100 ml in deionized water using Sodium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. S-0751, Sodium Chloride, Sigma Prod. No. S-9625 and Triton1 X-100, Sigma Stock. No. X-100. Adjust to pH 7.2 at 37\textdegree C with 1 M NaOH.)

B. Acetonitrile
 (Use Acetonitrile, Sigma Prod. No. A-3396.)

C. 50 mM p-Nitrophenyl Butyrate (PNPB)
 (Prepare 1.0 ml in Reagent B using p-Nitrophenyl Butyrate, Sigma Prod. No. N-9876.)

D. Lipoprotein Lipase Enzyme Solution
 (Immediately before use, prepare a solution containing 60 - 70 units/ml of Lipoprotein Lipase in cold Reagent A.)
Enzymatic Assay of LIPOPROTEIN LIPASE
(E.C. 3.1.1.34)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent A (Buffer)</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>Reagent D (Enzyme Solution)</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Mix by inversion and equilibrate to 37°C. Monitor the $A_{400\text{nm}}$ until constant, using a suitably thermostatted spectrophotometer. Then add:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent C (PNPB)</td>
<td>0.010</td>
<td>------</td>
</tr>
<tr>
<td>Deionized Water</td>
<td>------</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Immediately mix by inversion and record the increase at $A_{400\text{nm}}$ for approximately 5 minutes. Obtain the $\Delta A_{400\text{nm}}$/minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

$$\text{Units/ml enzyme} = \frac{(\Delta A_{400\text{nm}}/\text{min Test} - \Delta A_{400\text{nm}}/\text{min Blank})(1.01)(df)}{(0.0148)(0.1)}$$

1.01 = Volume (in milliliters) of assay
df = Dilution factor
0.0148 = Micromolar extinction coefficient of p-Nitrophenol at 400 nm
0.1 = Volume (in milliliter) of enzyme used

$$\text{Units/mg protein} = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}$$

UNIT DEFINITION:

One unit will release 1.0 nanomole (10^{-9} mole) of p-nitrophenol per minute at pH 7.2 at 37°C using p-nitrophenyl butyrate as substrate.
Enzymatic Assay of LIPOPROTEIN LIPASE
(E.C. 3.1.1.34)

FINAL ASSAY CONCENTRATION:

In a 1.01 ml reaction mix the final concentrations are 99 mM sodium phosphate, 149 mM sodium chloride, 0.5% (v/v) Triton X-100, 0.50 mM p-nitrophenyl butyrate, 1% (v/v) acetonitrile and 6 - 7 units lipoprotein lipase.

REFERENCES:

NOTE:

1. Triton X-100 is a registered trademark of the Rohm and Haas Co.
2. The reaction is linear up to a ΔA₄₀₀nm/minute of 0.1.
3. The extinction coefficient is described in Quinn, D.M. et al. (1982).
4. This assay is based on the cited references.
5. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that Sigma products conform to the information in Sigma publications. Purchaser must determine the suitability of the information and products for its particular use. Upon purchase of Sigma products, see reverse side of invoice or packing slip for additional terms and conditions of sale.