PERIODIC ACID-SCHIFF (PAS) STAINING SYSTEM
(Procedure No. 395)

INTENDED USE

The PAS staining system offers standard and microwave procedures for the demonstration of lymphocytes and mucopolysaccharides. The staining pattern of the lymphocytes are helpful in making therapeutic decisions in established cases of lymphocytic leukemia. The PAS reaction in tissue sections is useful for the demonstration of mucopolysaccharides. The Diastase (α-amylase) digestion procedure, followed by the PAS stain is useful as an aid in the diagnosis of glycoprotein storage disease. Periodic Acid Schiff (PAS) reagents are for “In Vitro Diagnostic Use”.

The PAS staining procedure may also be used for the demonstration of fungal organisms in tissue sections.²

When treated with periodic acid, glycols are oxidized to aldehydes. After reaction with Schiff’s reagent (a mixture of pararosaniline and sodium metabisulfite), a pararosaniline adduct is released that stains the glycol-containing cellular components. This reaction can be performed on blood or bone marrow films, tissue touch preparations or tissue sections.³,⁴ When used on blood or bone marrow films, this test may be helpful in recognizing some cases of erythroleukemia and acute lymphoblastic leukemia.⁴

Diastase (α-amylase) digestion may be employed as an aid in the diagnosis of glycoprotein storage disease. Diastase hydrolyzes starch, glycogen and degradation products originating in these polysaccharides present in tissue. The resultant by-products of the digestion process are rinsed away prior to PAS staining.⁴

A technique for rapid PAS staining using microwave ovens is included.⁵

REAGENTS

<table>
<thead>
<tr>
<th>Periodic Acid Solution, Catalog No. 3951-100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic acid, 1 g/l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schiff’s Reagent, Catalog No. 3952-50 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pararosaniline HCl, 1%, and sodium metabisulfite, 4%, in hydrochloric acid, 0.25 mol/l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hematoxylin Solution, Gill No. 3, Catalog No. GH53-100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certified hematoxylin, 6 g/l, sodium iodate, 0.6 g/l, aluminum sulfate, 52.8 g/l and stabilizer</td>
</tr>
</tbody>
</table>

STORAGE AND STABILITY:

- Store Periodic Acid Solution, and Schiff’s Reagent in refrigerator (2–8°C). Store Hematoxylin Solution, Gill No. 3 at room temperature (18–26°C). Reagents are stable until expiration date shown on labels. Formation of a precipitate in Schiff’s Reagent does not interfere with staining. Schiff’s Reagent is stable until expiration date shown on labels. Formation of a precipitate in Schiff’s Reagent will be helpful in recognizing some cases of erythroleukemia and acute lymphoblastic leukemia. The PAS reaction in tissue sections is useful for the demonstration of mucopolysaccharides. The Diastase (α-amylase) digestion procedure, followed by the PAS stain is useful as an aid in the diagnosis of glycoprotein storage disease. Diastase hydrolyzes starch, glycogen and degradation products originating in these polysaccharides present in tissue. The resultant by-products of the digestion process are rinsed away prior to PAS staining.

A technique for rapid PAS staining using microwave ovens is included.⁵

PREPARATION:

- Periodic Acid Solution, Schiff’s Reagent and Hematoxylin Solution, Gill No. 3 are supplied ready to use. Warm reagents to room temperature (18–26°C) before use.

- Scott’s Tap Water Substitute is prepared by diluting 1 part of Scott’s Tap Water to 40 ml of deionized water.

- Formalin-Ethanol Fixative Solution is prepared by mixing 5 ml of formaldehyde with 45 ml of 95% ethanol (Reagent Alcohol). Prepare fresh daily and keep tightly capped.

PRECAUTIONS:

- Normal precautions exercised in handling laboratory reagents should be followed. Dispose of waste observing all local, state, provincial or national regulations. Refer to Material Safety Data Sheet and product labeling for any updated risk, hazard or safety information.

- PAS TISSUE-TROL™ control slides are paraffin embedded human tissue containing PAS and should be considered potentially infectious.

PROCEDURE

SPECIMEN COLLECTION:

It is recommended that specimen collection be carried out in accordance with CLSI document M29-A3. No known test method can offer complete assurance that blood samples or tissue will not transmit infection. Therefore, all blood derivatives or tissue specimens should be considered potentially infectious.

- Freshly prepared whole, EDTA or heparinized blood or bone marrow films are used. Fix as soon as possible.¹,²

- For polysaccharides, tissue fixed in 10% neutral buffered formalin, Zenker’s or Bouin’s may be used.² It should be noted that some carbohydrates are water soluble.³ For the demonstration of glycoprotein, Carnoy’s fluid, Gendre’s fluid or acid alcoholic formalin are recommended.⁴ Time required for diagnosis extraction may be prolonged when tissue is fixed in a picric acid containing fixative.⁵ Cut tissue sections at 5 microns.

SPECIAL MATERIALS REQUIRED BUT NOT PROVIDED:

- Formaldehyde solution, 37%
- Reagent Alcohol
- Positive PAS control slides, such as PAS TISSUE-TROL™, Catalog No. TTR009-25EA, should be included in each run

MICROWAVE PROCEDURES ONLY:

- Microwave Oven
- Coplin jar with vented lids

- Scott’s Tap Water Substitute Concentrate, Catalog No. S5134-6x100ML
- α-Amylase (for Diastase Extraction Procedure only), Catalog No. A3176

NOTES:

If a microwave oven is used, please see the Owner’s Manual for instructions. Blood films prepared from clinically healthy individuals may be included for control purposes. Polymorphonuclear leukocytes will show an intense red cytoplasmic stain. Tissue sections known to be PAS positive and/or contain glycogen should be included each time a stain sequence is performed. The data obtained from this procedure serves only as an aid to diagnosis and should be reviewed in conjunction with other clinical diagnostic tests or information.

PROCEDURE:

I. BLOOD, BONE MARROW, OR TISSUE TOUCH PREPARATIONS

Standard Procedure:

1. Fix air dried blood films for 1 minute at room temperature in Formalin-Ethanol Fixative Solution.
2. Rinse slides 1 minute in slowly running tap water.
3. Immerse slides in Periodic Acid Solution for 5 minutes at room temperature.
4. Rinse slides in several changes of distilled water.
5. Immerse slides in Schiff’s Reagent for 15 minutes at room temperature.
6. Wash slides in running tap water for 5 minutes.
7. Counterstain slides in Hematoxylin Solution, Gill No. 3, for 90 seconds.
8. Rinse slides in running tap water for 15–30 seconds, air dry and examine microscopically under oil immersion (900x) lens. Slides may be mounted in tolune or xylene based mounting media.

Microwave Procedure:

1. Fix air dried films at room temperature for 1 minute in Formalin-Ethanol Fixative Solution.
2. Rinse slides for 1 minute in slowly running tap water.
3. Place slides in 40 ml of Periodic Acid Solution contained in a plastic Coplin jar.
4. Microwave on 800 watts for 10 seconds.
5. Rinse well in several changes of deionized water.
6. Place slides in 40 ml Schiff’s Reagent contained in a plastic Coplin jar.
7. Microwave at 800 watts for 15 seconds. Mix solution with a beral pipet or applicator stick and let incubate for 1 minute.
8. Rinse in warm, gently running tap water for 5 minutes.
9. Place slides in 40 ml of Hematoxylin Solution Gill No. 3 contained in a plastic Coplin jar.
10. Microwave on 800 watts for 10 seconds.
11. Rinse in running tap water for 1–2 minutes, then blue in Working Scott’s Tap Water Substitute at room temperature.
12. Rinse in running tap water. Air dry.
13. Slides may be mounted in tolune or xylene based mounting media.

II. TISSUE SECTIONS

Standard Procedure:

1. Deparaffinize and hydrate sections to deionized water.
2. Immerse slides in Periodic Acid Solution for 5 minutes at room temperature (18–26°C).
3. Rinse slide in several changes of distilled water.
4. Immerse slides in Schiff’s Reagent for 15 minutes at room temperature (18–26°C).
5. Wash slides in running tap water for 5 minutes.
6. Counterstain slides in Hematoxylin Solution, Gill No. 3, for 90 seconds.
7. Rinse slides in running tap water.
8. Dehydrate, clear and mount sections in tolune or xylene based mounting media.

Microwave Procedure:

1. Deparaffinize and hydrate to deionized water.
2. Place slides in 40 ml of Periodic Acid Solution contained in a plastic Coplin jar. Loosely cover jar with lid, or use lids with holes drilled into them.
3. Microwave at 800 watts for 10 seconds.
4. Rinse well in several changes of deionized water.
5. Place slides in 40 ml Schiff’s Reagent contained in a plastic Coplin jar.
6. Microwave at 800 watts for 15 seconds. Mix solution with a beral pipet or applicator stick and let incubate for 1 minute.
7. Rinse in warm, gently running tap water for 5 minutes.
8. Place slides in Hematoxylin, Gill No. 3, contained in a plastic Coplin jar.
9. Microwave on 800 watts for 10 seconds.
10. Rinse in running tap water for 1–2 minutes, then blue in Scott’s Tap Water Substitute at room temperature. Rinse in running tap water. Dehydrate, clear and mount.

Microwave Procedure for Diastase (α-Amylase) Digestion:

1. Use duplicate test slides. Label one for digestion with diastase and one for PAS staining only.

NOTE: Slides coated with a tissue adhesive are recommended. Do not celluloidize sections when doing diastase digestion.¹

- Deparaffinize and hydrate slides to deionized water.
- Prepare Diastase (α-amylase) Working Solution by dissolving 0.2 g α-Amylase, (Catalog No. A3176), to 40 ml of deionized water. Mix well and place in plastic Coplin jar. Prepare just prior to use.
- Microwave at 600 watts for 25 seconds.
- Remove slides from Coplin jar and rinse digested slide in running tap water for 5 minutes.
- Using both the digested and the undigested slides, proceed with the Microwave Procedure for Tissue, step 2.

PERFORMANCE CHARACTERISTICS

PAS positive substances stain pink to red and nuclei are blue. A Diastase (α-Amylase) Extraction slide will have no visible PAS staining of glycogen when compared to the undigested glycogen positive control slide. If observed results vary from expected results, please contact Sigma-Aldrich Technical Service for assistance.
REFERENCES

5. Thompson SW: Selected Histochemical and Histopathological Methods, CC Thomas, Springfield, (IL), pp 520–539, 1966

TISSUE-TROL is a trademark of Sigma-Aldrich Co. LLC

2014 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA-ALDRICH is a trademark of Sigma-Aldrich Co. LLC, registered in the US and other countries. Sigma brand products are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the Sigma-Aldrich website at www.sigmaaldrich.com and/or on the reverse side of the invoice or packing slip.

Procedure No. 395
Previous Revision: 2011-03
Revised: 2014-09