Diethylumbelliferyl phosphate (UBP; DEUP): Cholesteryl ester hydrolase inhibitor

Prod. Code D 7692

An effective inhibitor of the cholesteryl ester hydrolase in intact MA-10 Leydig tumor cells (IC_{50} = 11.6 µM in (Bu)2cAMP-stimulated, cholesteryl ester-loaded MA-10 cells) [1]. Blocks steroidalogenesis mainly by preventing cholesterol transport into the mitochondria of steroidogenic cells [1]. In Fu5AH cells, UBP caused a 72% decrease in the cellular free cholesteryl/cholesteryl ester and inhibition of triglycerides (TG), but did not interfere with esterified cholesterol and TG synthesis nor did it cause cellular toxicity in doses up to 120 µg/ml [2,3]. Inhibitors of cholesteryl ester are anticipated to limit the absorption of dietary cholesterol [4].

References

2. Delamatre, J.G., et al., Evidence that a neutral cholesteryl ester hydrolase is responsible for the extralysosomal hydrolysis of high-density lipoprotein cholesteryl ester in rat hepatoma cells (Fu5AH). J. Cell Physiol., 157, 164-168 (1993).

S-15176 difumarate salt: Carnitine palmitoyltransferase (CPT-1) inhibitor; antioxidant and anti-ischemic agent

Prod. Code S 5944

IC_{50} for carnitine palmitoyltransferase (CPT-1) in heart homogenate is 16.8 µM. Inhibits in vitro lipid peroxidation (0.3 µM) in liver from animals subjected to 2 hr of liver injury induced by warm ischemia-reperfusion. The shift from fatty acid to glucose oxidation may contribute to anti-ischemic effect. Also used to inhibit mitochondrial permeability transition and to prevent onset of apoptosis by preventing collapse of the electrochemical gradient across the mitochondrial membrane.

References

**MEDICA 16: ATP-citrate lyase inhibitor; potent triacylglycerol-lowering agent

Prod. Code M 5693

ATP-citrate lyase is the main enzyme responsible for supplying acetyl-CoA to many tissues, and most notably in adipose tissue and liver where de novo synthesis of fatty acids is very active, especially when glucose is in excess [1]. Because ATP-citrate lyase is involved in both the fatty acid and cholesterol synthesis pathways, it has been suggested that inhibition of this enzyme may be a drug target for hyperlipidemia [1]. One compound that supports this suggestion is MEDICA 16. When MEDICA 16 was given to JCR:LA-cp rats (0.25% (wt/wt) starting at weaning up to three weeks of age, JCR:LA-cp rats develop extreme obese/insulin-resistant syndrome by 12 weeks of age), their plasma lipids decreased dramatically and their food intake and body weight returned to normal levels by 8 weeks of age [2]. In addition, insulin levels were significantly decreased, and plasma triacylglycerol concentrations were maintained at the same level as the control lean rats [2].

References

A-350619 hydrochloride: Novel, soluble guanylyl cyclase activator

Prod. Code A 6604

The soluble guanylyl cyclase (sGC) receptor is a major receptor for nitric oxide (NO). Guanylyl cyclase converts GTP to cGMP affecting such physiological processes as smooth muscle relaxation, neurotransmission, inhibition of platelet aggregation and immune response. A-350619, an activator of sGC, modulates the catalytic properties of sGC [increases V_{max} from 0.1 to 14.5 µmol/min/mg (145-fold increase), lowers K_{m} from 300 to 50 µM (6-fold decrease)]. A-350619 has also been shown to relax rabbit corpus cavernosum tissue strips in a dose-dependent manner with IC_{50} of 80 µM (vs 50 µM for another sGC inhibitor, YC-1). Moreover, A-350619 has been shown to induce penile erection in a conscious rat model (1 µmol/kg) suggesting that activation of sGC could be used as an alternate method of enhancing the effect of NO for the treatment of sexual dysfunction.

Sold under license from Abbott Laboratories

Reference

Related Products

```
Product Name          Descriptor          Prod. Code
-------------------------------------------------
Isoliquiritigenin     Guanylyl cyclase activator I 3766
NS 2028              Guanylyl cyclase inhibitor N-211
ODQ                  Guanylyl cyclase inhibitor O 3636
YC-1                 Guanylyl cyclase activator Y-102
```