Enzymatic Assay of \textit{d}-LACTIC DEHYDROGENASE (EC 1.1.1.28)

PRINCIPLE:

\[
\text{Pyruvate} + \beta\text{-NADH} \xrightarrow{\text{d-Lactic Dehydrogenase}} \text{d-Lactate} + \beta\text{-NAD}
\]

Abbreviations used:

\begin{align*}
\beta\text{-NADH} &= \beta\text{-Nicotinamide Adenine Dinucleotide, Reduced Form} \\
\beta\text{-NAD} &= \beta\text{-Nicotinamide Adenine Dinucleotide, Oxidized Form}
\end{align*}

CONDITIONS: \(T = 25^\circ C, \ \text{pH} = 7.0, \ A_{340nm}, \ \text{Light path} = 1 \ \text{cm} \)

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

\begin{enumerate}
\item[A.] 100 mM Potassium Phosphate Buffer, pH 7.0 at 25°C
(Prepare 200 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379. Adjust to pH 7.0 at 25°C with 1 M KOH.)
\item[B.] 11 mM \(\beta\text{-Nicotinamide Adenine Dinucleotide, Reduced Form Solution (\(\beta\text{-NADH} \))}
(Prepare 1 ml in cold deionized water using \(\beta\text{-Nicotinamide Adenine Dinucleotide, Reduced Form, Disodium Salt, Sigma Prod. No. N-8129. PREPARE FRESH.} \)
\item[C.] 20 mM Sodium Pyruvate Solution (Pyruvate)
(Prepare 1.0 ml in cold deionized water using Pyruvic Acid, Sodium Salt, Sigma Prod. No. P-2256.)
\item[D.] 1.0\% (w/v) Bovine Serum Albumin Solution (BSA)
(Prepare 50 ml in Reagent A using Albumin, Bovine, Sigma Prod. No. A-4503 or equivalent.)
\item[E.] \textit{d}-Lactic Dehydrogenase Enzyme Solution
(Immediately before use, prepare a solution containing 0.3 - 0.60 unit/ml of \textit{d}-Lactic Dehydrogenase in cold Reagent D. PREPARE FRESH.)
\end{enumerate}
Enzymatic Assay of d-LACTIC DEHYDROGENASE
(EC 1.1.1.28)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent A (Buffer)</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Reagent B (β-NADH)</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Reagent C (Pyruvate)</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Mix by inversion and equilibrate to 25°C. Monitor the A_{340nm} until constant, using a suitably thermostatted spectrophotometer. Then add:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent D (BSA)</td>
<td>------</td>
<td>0.05</td>
</tr>
<tr>
<td>Reagent E (Enzyme Solution)</td>
<td>0.05</td>
<td>------</td>
</tr>
</tbody>
</table>

Immediately mix by inversion and record the decrease in A_{340nm} for approximately 5 minutes. Obtain the ΔA_{340nm}/minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

$$\text{Units/ml enzyme} = \frac{(\Delta A_{340nm}/\text{min Test} - \Delta A_{340nm}/\text{min Blank})(2.7)(df)}{(6.22)(0.05)}$$

2.7 = Total volume (in milliliters) of the assay

df = Dilution

6.22 = Millimolar extinction coefficient of β-NADH at 340 nm

0.05 = Volume (in milliliters) of assay

$$\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}$$

$$\text{Units/mg protein} = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}$$

UNIT DEFINITION:

One unit will reduce 1.0 µmole of pyruvate to d-lactate per minute at pH 7.0 at 25°C.

FINAL ASSAY CONCENTRATION:

In a 2.75 ml reaction mix, the final concentrations are 94 mM potassium phosphate, 0.20 mM β-nicotinamide adenine dinucleotide, reduced form, 0.74 mM pyruvate, 0.015 - 0.03 unit d-lactic dehydrogenase.
Enzymatic Assay of d-LACTIC DEHYDROGENASE
(EC 1.1.1.28)

NOTES:

1. This assay is based on the cited reference.

2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

This procedure is for informational purposes. For a current copy of Sigma’s quality control procedure contact our Technical Service Department.