Enzymatic Assay of d-AMINOLEVULINATE DEHYDRATASE
(EC 4.2.1.24)

PRINCIPLE:

\[2 \text{d-Aminolevulinic Acid} \xrightarrow{\text{AVD}} \text{Porphobilinogen} + 2\text{H}_2\text{O} \]

Abbreviation:
AVD = d-Aminolevulinate Dehydratase

CONDITIONS: \(T = 37^\circ\text{C}, \ \text{pH} = 6.5, \ A_{555\text{nm}}, \ \text{Light path} = 1 \text{cm} \)

METHOD: Colorimetric

REAGENTS:

A. 100 mM Potassium Phosphate Buffer with 20 mM Dithiothreitol, pH 6.5 at 37°C
(Prepare 100 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous,
Sigma Prod. No. P-5379, and DL-Dithiothreitol, Sigma Prod. No. D-0632. Adjust to pH 6.5 at
37°C with 1 M KOH.)

B. 50 mM d-Aminolevulinic Acid Solution (AV Acid)
(Prepare 5 ml in Reagent A using d-Aminolevulinic Acid, Hydrochloride, Sigma Prod.
No. A-3785.)

C. 0.16 mM Porphobilinogen Solution (Porph)
(Prepare 10 ml in Reagent A using Porphobilinogen, Sigma Prod. No. P-1134.)

D. 10% (v/v) Trichloroacetic Acid with 100 mM Mercuric Chloride Solution (TCA)
(Prepare 15 ml in deionized water using Trichloroacetic Acid Solution, 6.1 N, approximately
100% (w/v), Sigma Stock. No. 490-10, and Mercuric Chloride, Sigma Prod. No. M-6529.)

E. Ehrlich's Color Reagent (ECR)
(Prepare by adding 1 g of p-Dimethylaminobenzaldehyde, Sigma Prod. No. D-2004 to 42 ml of
Acetic Acid, Glacial, Sigma Prod. No. A-6283. Then add 8 ml of Perchloric Acid, Sigma Stock
No. 24425-2.)
Enzymatic Assay of d-AMINOLEVULINATE DEHYDRATASE
(EC 4.2.1.24)

REAGENTS: (continued)

F. d-Aminolevulinate Dehydratase (Enzyme Soln)
(Immediately before use, prepare a solution containing 0.15 unit/ml in cold Reagent A.)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable containers:

<table>
<thead>
<tr>
<th></th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Blank</th>
<th>Std1</th>
<th>Std2</th>
<th>Std3</th>
<th>Std4</th>
<th>Std5</th>
<th>Std Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent A (Buffer)</td>
<td>0.70</td>
<td>0.65</td>
<td>0.60</td>
<td>0.90</td>
<td>0.80</td>
<td>0.75</td>
<td>0.70</td>
<td>0.65</td>
<td>0.60</td>
<td>1.00</td>
</tr>
<tr>
<td>Reagent F (Enzyme Soln)</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
<td>0.10</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Mix by vortexing and equilibrate at 37°C for 10 minutes (time required for enzyme activation). Then add:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>0.20</th>
<th>0.25</th>
<th>0.30</th>
<th>0.35</th>
<th>0.40</th>
<th>-----</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent C (Porph)</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-----</td>
</tr>
<tr>
<td>Reagent B (AV Acid)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Mix by vortexing and incubate at 37°C for 60 minutes. Then add:

<table>
<thead>
<tr>
<th></th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent D (TCA)</td>
<td></td>
</tr>
</tbody>
</table>

Mix by vortexing and centrifuge to clarify. Pipette (in milliliters) the following into suitable cuvettes:

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Supernatant</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Blank Supernatant</td>
<td>-----</td>
<td>-----</td>
<td>0.50</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>
PROCEDURE: (continued)

<table>
<thead>
<tr>
<th></th>
<th>Test1</th>
<th>Test2</th>
<th>Test3</th>
<th>Blank</th>
<th>Std1</th>
<th>Std2</th>
<th>Std3</th>
<th>Std4</th>
<th>Std5</th>
<th>Std Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Supernatant</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Std Blk Sup</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>0.50</td>
</tr>
<tr>
<td>Reagent E (ECR)</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Mix by inversion and let the precipitate settle. \(^1\) Read the \(A_{555\text{nm}}\) for the Test, Blank, Standards, and Standard Blank after 10 minutes.

CALCULATIONS:

Standard Curve:

\[
\text{r } A_{555\text{nm}} \text{ Standard} = A_{555\text{nm}} \text{ Standard} - A_{555\text{nm}} \text{ Standard Blank}
\]

Prepare a Standard Curve by plotting the \(r A_{555\text{nm}}\) Standard vs the µmoles of porphobilinogen.

Sample Determination:

\[
\text{r } A_{555\text{nm}} \text{ Test} = A_{555\text{nm}} \text{ Test} - A_{555\text{nm}} \text{ Blank}
\]

Determine the µmoles of porphobilinogen produced using the Standard curve.

\[
\text{Units/ml enzyme} = \frac{\text{(µmole of porphobilinogen produced)}}{(0.25)}
\]

0.25 = Volume (in milliliter) of enzyme used (may also be 0.20 or 0.30 depending upon the enzyme volume)

\[
\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}
\]

\[
\text{Units/mg protein} = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}
\]
Enzymatic Assay of d-AMINOLEVULINATE DEHYDRATASE
(EC 4.2.1.24)

UNIT DEFINITION:

One unit will produce 1.0 µmole of porphobilinogen from d-aminolevulinic acid in 60 minutes at pH 6.5 at 37°C.

FINAL ASSAY CONCENTRATIONS:

In a 1.00 ml reaction mix, the final concentrations are 100 mM potassium phosphate, 20 mM dithiothreitol, 5 mM d-aminolevulinic acid, and 0.03 - 0.045 unit d-aminolevulinate dehydratase.

REFERENCES:

NOTES:

1. This precipitate does not interfere with the assay and the solution is not centrifuged after formation of the precipitate. This eliminates contaminating additional laboratory glassware with mercuric chloride.

2. All products and stock numbers, unless otherwise indicated, are Sigma product and stock numbers.

This procedure is for informational purposes. For a current copy of Sigma’s quality control procedure contact our Technical Service Department.