m-AMINOPHENYLBORONIC ACID
AFFINITY PRODUCTS
Sigma Prod. Nos. A4046, A8312, and A8530

PHYSICAL DESCRIPTION:¹

A8530 Matrix: cross-linked 6% beaded agarose
Activation: epoxy, with attachment through the amino group, with a 12-atom spacer
Ligand immobilized: 5-20 µmoles per mL
Form: (light pink) suspension in 0.5 M NaCl, with 0.1 M sodium acetate, pH 5.0
Synonym: PBA-agarose

A4046 Matrix: acrylic beads
Activation: oxirane, with attachment through the amino group, with a 5-atom spacer
Ligand immobilized: 300-600 µmoles per gram
Form: lyophilized powder
Swelling: 1 g swells to approximately 4 mL

A8312 Matrix: 6% beaded agarose
Activation: epichlorohydrin, with attachment through amino group with a 9-atom spacer
Ligand immobilized: 40-90 µmoles per mL
Binding Capacity: 8-14 mg Peroxidase Type VI per mL
Form: suspension in water containing 0.002% chlorhexidine diacetate.

STORAGE/ STABILITY AS SUPPLIED:

All three products are stable at least two years stored at 2-8°C. Both A8312 and A8530 should be kept from freezing to avoid damage to the agarose bead structure.

GENERAL REMARKS:

Due to the attachment through the amino group, the effective group available to bind proteins is a phenylboronate group, which can form a temporary covalent bond with any molecule that contains a 1,2-cis-diol group. Porath offers a method of preparing the resin by epoxy-activation of beaded agarose.²

The phenylboronate ligand can be used directly with a molecule containing the cis-diol structure (to produce) a second ligand with more specific binding. Most nucleotides and nucleosides will bind to phenylboronate, so that they, in turn, bind other molecules. These resins can also be used to bind a variety of enzymes, for example, glucose-6-phosphate dehydrogenase and hexokinase, when NADP⁺ is complexed with the column.³ Lactamases have also been purified using PBA-agarose.⁴ Serine proteases such as subtilisin, α-chymotrypsin and trypsin have been purified using aminooethyl phenylboronic acid to CH-Sepharose⁵. Phenylboronic acid resins have been used for separation and quantitation of glycosylated hemoglobins.⁶ ⁷ In general, equilibration buffers should be of low ionic strength, with pH 7-9.¹
Suggested protocol for binding nucleosides:

Equilibrate a 1.5- to 2-mL column with 50 mM potassium phosphate containing 1.0 M NaCl, pH 7.8, for approx. 24 hours before use, using a flow rate of 2 mL/hour. Apply a mixture of nucleosides and deoxynucleosides (2.5 µmole of each) to the column in the same buffer (total volume 0.4 mL). Develop the column using the same buffer, collecting deoxynucleosides in the void volume; elute tightly-bound nucleosides with 100 mM sorbitol in buffer, collecting 1 to 2 mL fractions. Chromatography may be conducted at 4°C or at 25°C. Fractions may be monitored at 260 nm.

Gehrke et al. used 25 mM ammonium acetate buffer pH 8.8, with flow rate of 10-20 mL per hour (gravity flow) to wash the new resin, then 0.1 M formic acid, "which causes the resin to contract visibly", and again with 0.25 M ammonium acetate buffer pH 8.8. Samples were loaded in ammonium acetate buffer, and elution was done with 0.1 M formic acid.

Suggested protocol for binding glycoproteins:

For a column volume of 2 mL, apply protein 2-4 mg in approximately 250 µL of buffer: 50 mM taurine/NaOH, pH 8.7, containing 20 mM MgCl₂ (more or less, depending on the glycoprotein). Develop the column at a flow rate of 2 mL/hour, collecting 2-mL fractions. Elute the bound protein using the same buffer with 50 mM sorbitol or 50 mM Tris/HCl added.

REGENERATION:

The resin can be washed using 10 column volumes of each:

1. 0.1 M borate buffer pH 9.8 containing 1.0 M NaCl;
2. 0.1 M borate buffer pH 9.8;
3. deionized water;
4. 2.0 M NaCl

The resin can be stored in 1 M NaCl (or the solution in which it was originally packaged) at 2-8°C with a bacteriostat. It should be equilibrate with starting buffer prior to use.

REFERENCES:

ADDITIONAL GENERAL REFERENCES:

Yue, D.K. et al., Diabetes, 31(8), 701-705 (1982).

Sigma warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packaging slip.