Method Summary

Amiodarone from Serum

C8-HD 4mm/1mL

Summary

An analytical method is described for the solid phase extraction (SPE) of the antiarrhythmic drug amiodarone and its metabolite, desethylamiodarone, from 250 µL serum using C8-HD Empore™ Extraction Disk Cartridges (4mm/1mL). This particular method highlights use of the SPE membrane with a centrifuge. Method optimization details are included and a comparison was made with conventional packed columns (100mg/1mL) to demonstrate the advantages of the membrane format for solid phase extraction.

Overall, the extraction of amiodarone and its metabolite from serum using particle-loaded membranes achieves excellent linearity, recovery and precision. Improved concentrating ability and reduced solvent volume requirements are demonstrated, compared with traditional packed columns. In addition, elution of drugs from the membrane sorbent was efficiently accomplished using a small volume of HPLC mobile phase, eliminating analyte instability problems and the need for additional time-consuming evaporation and reconstitution steps.

Introduction

Membranes with chemically bonded chromatographic particles enmeshed in polytetrafluoroethylene (PTFE) microfibrils are new analytical tools for improved solid phase extraction of drugs. The effectiveness of the thin PTFE membrane loaded with C8 bonded silica (8 µm avg.) is demonstrated for the extraction of the antiarrhythmic drugs amiodarone and its metabolite, desethylamiodarone, from serum. These drugs are often monitored to minimize toxic side effects seen at concentrations > 2.5 µg/mL.

Solid phase extraction and HPLC analysis were performed and the following parameters were used to assess performance: linearity, recovery, precision, elution volume requirements, and lowest limit of quantitation. A comparative evaluation with conventional large particle (40 µm avg.) sorbents packed in columns demonstrates the advantages of the membrane format for solid phase extractions.
Materials

Reagents, Standards and Supplies

Acetic Acid
1 M, HPLC Grade

Internal Standard Solution
L8040, 10 µg/mL in methanol
Store at room temperature

Wash Solution
Acetonitrile/water (20/80, v/v)

Eluting Solution/HPLC Mobile Phase
Water/acetonitrile/tetrahydrofuran/acetic acid/n-butylamine (100/900/20/0.3/0.4, by volume)

Standard Solution
Stock solution contained 300 µg/mL each of amiodarone and desethylamiodarone in methanol. Working standard solutions were prepared by diluting stock solution with drug-free serum. Store in 1 mL air-tight vials in freezer (-20°C).

Empore Extraction Disk Cartridge
4mm/1mL containing octyl (C8) bonded silica, high density formulation (C8-HD)

HPLC Conditions
See diagram below. Note: use of silica saturating column is important to minimize deterioration of analytical column.
Typical Chromatograms

Typical Chromatograms

Standards in Serum

Patient’s Serum

Concentration (µg/mL)

Relative Peak Height

y = -0.0309 + 0.3846x R = 1.00

y = -0.0513 + 0.5011x R = 1.00

Precision and Recovery

<table>
<thead>
<tr>
<th></th>
<th>AMIO</th>
<th></th>
<th></th>
<th>DAMIO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>(between-run, n = 15)</td>
<td></td>
<td></td>
<td>Recovery</td>
<td>(at 300 µg/mL)</td>
<td>Sensitivity (lowest limit of quantitation)</td>
</tr>
<tr>
<td></td>
<td>Mean µg/mL</td>
<td>SD µg/mL</td>
<td>CV %</td>
<td>Mean µg/mL</td>
<td>SD µg/mL</td>
<td>CV %</td>
</tr>
<tr>
<td>AMIO</td>
<td>0.415</td>
<td>0.015</td>
<td>3.7</td>
<td>0.094</td>
<td>3.1</td>
<td>92-95%</td>
</tr>
<tr>
<td>DAMIO</td>
<td>0.412</td>
<td>0.013</td>
<td>3.3</td>
<td>0.096</td>
<td>3.2</td>
<td>90-93%</td>
</tr>
</tbody>
</table>

SD = standard deviation
CV = coefficient of variation
The drug extraction was duplicated on conventional SPE columns with loosely packed large particle (40 µm) C8 bonded silica. Both membrane and column contained C8 sorbent from the same manufacturer and differed only in particle size. The most remarkable findings were the volume of solvent required for complete elution of drugs (0.75 mL membrane; 2.75 mL column) and resulting differences in analytical sensitivity when the eluate is directly injected onto the HPLC system.

Elution Volume Profiles

![Graphs showing elution volume profiles for SPE Empore Membrane (4mm/1mL) and SPE Packed Column (100mg/1mL).](image)

Performance Data

<table>
<thead>
<tr>
<th>Physical Characteristics</th>
<th>Empore Membrane</th>
<th>Packed Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonded Silica</td>
<td>C8</td>
<td>C8</td>
</tr>
<tr>
<td>Particle Size</td>
<td>8 µm</td>
<td>40 µm</td>
</tr>
<tr>
<td>Effective Weight</td>
<td>4 mg</td>
<td>100 mg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extraction Performance</th>
<th>Empore Membrane</th>
<th>Packed Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision (overall CVs)</td>
<td>3.4%</td>
<td>3.5%</td>
</tr>
<tr>
<td>AMIO</td>
<td>3.2%</td>
<td>3.4%</td>
</tr>
<tr>
<td>DAMIO</td>
<td>up to at least</td>
<td>up to at least</td>
</tr>
<tr>
<td>Linearity</td>
<td>10 µg/mL</td>
<td>10 µg/mL</td>
</tr>
<tr>
<td>Lowest Limit of Quantitation</td>
<td>0.05 µg/mL</td>
<td>0.18 µg/mL</td>
</tr>
<tr>
<td>Volume of Elution</td>
<td>0.75 mL</td>
<td>2.75 mL</td>
</tr>
<tr>
<td>Clarity of Eluate</td>
<td>Clear</td>
<td>Particles present*</td>
</tr>
<tr>
<td>Total Solvent Volume for Extraction</td>
<td>2.2 mL</td>
<td>4.4 mL</td>
</tr>
</tbody>
</table>

*Centrifugation of eluate required to prevent plugging of HPLC
Extraction Procedure

1. Combine into a test tube and mix:
 A. 250 µL serum (or calibrators)
 B. 800 µL 1N acetic acid
 C. 100 µL methanol with internal standard (L8040)

2. Prime the membrane by manually pushing through 3 drops of methanol followed by 3 drops of water.

3. Load sample mixture into cartridge and force through membrane by either:
 A. centrifuging 100-120 x g for 5 min OR
 B. manually applying pressure with a syringe OR
 C. pulling with a vacuum

 With centrifugation, consistent flow rates can be maintained and many samples can be processed simultaneously.

4. Manually push through 500 µL of acetonitrile/-water, 20/80 (v/v) to remove retained proteins and interferences.

5. Elute the retained drugs by pushing through 800 µL of mobile phase (same as for HPLC) and collect in polypropylene tube.

6. Inject 50 µL of eluate onto HPLC column.

7. Relative retention time and relative peak height techniques are used for identification and quantitation, respectively.

Optimization Charts

- Adjusted pH of Serum
- Normality of Acetic Acid
- Acetonitrile Content of Wash Solution
- Relationship of Serum Sample Volume to Analytical Response

![Charts showing optimization data for different conditions like pH, acetic acid normality, acetonitrile content, and sample volume.](attachment:image.png)
The C8 particle-loaded Empore Extraction Disk Cartridge (4mm/1mL) efficiently extracts amiodarone and its metabolite from serum.

Method performance data demonstrate:
- Between-run precision (%CV) of 3.1 - 3.7%
- Extraction recoveries of 90 - 95%
- Linearity from 0.05 µg/mL (limit of quantitation) to at least 10 µg/mL

In some respects, both membrane and traditional large particle packed columns performed similarly in this assay. However, distinct advantages were observed for the membrane. Remarkably, the drugs could be eluted from the membrane with HPLC mobile phase and the eluate directly injected onto the HPLC system, without additional concentration steps or loss of sensitivity.

When compared with SPE columns, the Empore Disk Cartridge:
- Allowed for a smaller elution volume
- Afforded 3.5 times greater analytical sensitivity
- Used only half as much reagent solvent volume
- Produced essentially particle-free eluates

The improved concentrating ability of the Empore Disk Cartridge can be attributed to the robust configuration of the sorbent within an inert support. The small 8 µm (avg.) C8 bonded silica particles tightly enmeshed within PTFE fibrils give greater surface area and increased capacity per milligram of sorbent than conventional large 40 µm (avg.) particle sorbents loosely packed in columns.

Reference

Visit Our Web Site

Detailed product and technical information, including *Instructions for Use* and *Answers to Frequently Asked Questions*, can be found on the Internet.

More Information

<table>
<thead>
<tr>
<th>Ordering and Customer Service</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within United States</td>
<td>1 800 648 3550</td>
<td>1 651 733 9520</td>
</tr>
<tr>
<td>Outside United States</td>
<td>+1 651 737 2433</td>
<td>+1 651 733 9520</td>
</tr>
</tbody>
</table>

Technical Service

| Within United States | 1 800 648 3550 | 1 651 733 9520 |
| Outside United States | +31 (0)76 530 1334 | +31 (0)76 530 1136 |

IMPORTANT NOTICE TO PURCHASER:

All statements, technical information and recommendations contained in this literature are based on tests conducted with 3M approved equipment and are believed to be reliable. However, the accuracy or completeness of the tests are not guaranteed. THE FOLLOWING IS MADE IN LIEU OF ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE: The seller’s and manufacturer’s only obligation will be to replace the quantity of the product proved to be defective. Neither the seller nor 3M will be liable for any injury, loss or damage, direct or consequential, arising out of the use of or the inability to use the product. Before using, the user must determine the suitability of the product for his or her intended use. This product is intended for scientific research use only.