Food manufacturers routinely analyze vitamins in their products to determine quantitative levels and to monitor changes that have occurred in food processing. In our study, various mixtures of fat-soluble vitamins in A, D, and E groups were studied by reversed-phase HPLC using Discovery columns. These columns yielded excellent resolution and unique selectivity.

Key Words
- fat-soluble vitamins
- Discovery HPLC columns
- reversed phase HPLC

Vitamins are an extremely diverse range of organic compounds present in minute amounts in natural foodstuffs. They are vital in the enzyme reactions that are necessary for carbohydrate, fat, and protein metabolism. Vitamins are relatively unstable, affected by factors such as heat, light, air, other food components, and food processing conditions (1,2).

Because of their critical role in nutrition and their relative instability, qualitative and quantitative analyses are an important issue as well as a challenging task for food manufacturers. HPLC is preferred for vitamin separation because of its high selectivity (3). Recent studies show various applications in determining vitamins in different sample sources (4-6).

Fat-soluble vitamins are very hydrophobic and must be dissolved in organic solvents. In reversed phase HPLC, in order to elute the vitamins, a very high concentration of methanol or acetonitrile is needed.

We used 95% methanol to dissolve vitamin A acetate, three vitamin E isomers, and vitamin E acetate for separation on a Discovery® C18 column (Figure A), and 90% acetonitrile for analysis of a similar mixture on a Discovery C8 column (Figure B). The two analyses yielded almost identical results. We separated a mixture of these same vitamins and vitamin D using the Discovery C8 column (Figure C). All three chromatograms exhibited complete separation, excellent resolution, and good peak shape.

In our analysis of the fat-soluble vitamins in a sample of Centrum® multivitamin liquid, using a Discovery C8 column (Figure D), vitamin E acetate and vitamin A palmitate were clearly identified, while the vitamin D peak was barely obvious on the baseline. In a similar sample spiked with vitamin D (Figure E), the vitamin D was completely resolved.

We used a Discovery C18 column to separate the two main forms of vitamin D. Ergocalciferol (D₂) and cholecalciferol (D₃) were clearly separated using 100% acetonitrile (Figure F).
For more information, or current prices, contact your nearest Supelco subsidiary listed below. To obtain further contact information, visit our website (www.sigma-aldrich.com), see the Supelco catalog, or contact Supelco, Bellefonte, PA 16823-0048 USA.

Supelco is a member of the Sigma-Aldrich family. Supelco products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product for a particular use. Additional terms and conditions may apply. Please see the reverse side of the invoice or packing slip.

Ordering Information:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery HPLC Columns</td>
<td></td>
</tr>
<tr>
<td>15cm x 4.6mm ID, 5µm particles</td>
<td></td>
</tr>
<tr>
<td>Discovery C8</td>
<td>59353-U</td>
</tr>
<tr>
<td>Discovery C18</td>
<td>504955</td>
</tr>
</tbody>
</table>

| Selectivity Pack | |
| Four columns, one of each Discovery phase (C8, C18, RP-AmideC16, Cyan), dimensions same as above | 55722-U |

References

Trademarks

Centrum – American Home Products Corp.

Discovery – Sigma-Aldrich Co.