Cleaning Flame Ionization Detectors: When and How

Noisy chromatograms, random spikes, and poor detector sensitivity are symptoms of a dirty FID — a common problem in gas chromatography. You will consistently obtain better chromatograms and reduce instrument downtime if you keep the FID clean. This bulletin describes methods of troubleshooting noise to confirm whether the source is a dirty FID, methods of cleaning FIDs, and ways to reduce contamination in the future.

Key Words:
- gas chromatograph maintenance
- flame ionization detector maintenance

The most common source of contamination in a flame ionization detector (FID) is bleed from silicone stationary phases and silylating reagents, which combust in the FID and produce silica. When deposited on surfaces within the detector, this white powder causes noisy chromatograms, random spikes, and poor detector sensitivity (Figure A). The use of carbon disulfide or hydrocarbons as solvents creates other forms of detector contamination.

Is the Detector Really Your Problem?
Before you shut down your instrument and clean your detector, it is wise to confirm that the problem is detector-related, rather than related to some other component of your system. The few, simple procedures described here can eliminate other possibilities as the source of the problem.

Carrier Gas and Stationary Phase
Seal the detector inlet in the oven with a Swagelok® plug and ignite the detector. If the chromatogram noise disappears, then the source of the problem is contaminants in the carrier gas or bleed from the chromatography column, not a dirty FID. To prevent this problem, you should always use a carrier gas purification system and columns prepared from chromatography-quality stationary phases.

Hydrogen and Air Systems
A problem in the hydrogen or compressed air delivery system can be a source of noise. Measure the flow rates for both gases (refer to your instrument manual). An incorrect flow rate in either source can cause noise, lack of sensitivity, and/or difficulty when igniting the flame. Also check the connections on both systems. An electronic gas leak detector, such as one of the GOW-MAC® detectors from Supelco, will quickly and easily pinpoint gas leaks via differences in thermal conductivity. If you do not find a major leak, check the gas pressure at the cylinders. If the pressure is less than 500psig, replace the cylinder.

A contaminated cylinder of gas could be the source of the problem, especially if the noise appeared several hours after you changed a cylinder. Check each cylinder for contaminants and replace if necessary. To eliminate the problem of contaminated air, we recommend using a zero air generator (see page 3).

Electrical System
Electrical noise can cause symptoms similar to a dirty FID. A poor connection due to oxidized contacts will act as a small capacitor and cause spikes and/or loss of sensitivity. If your FID has clip contacts to the collector or flame jet, we recommend you clean them periodically with emery cloth.

Electrical devices located near your chromatograph can interfere with the instrument's power supply and cause intermittent or random spikes. To isolate this source of noise, disconnect the electrometer cable(s) from the FID. If noise persists, it is coming from the electrical system.

In a two-detector system, electrical noise will appear on both detectors. If noise is present on only one channel, the electrometer or electrometer cable(s) may be the problem. Switch the cables at the electrometer and FID. If the noise now appears on the channel that was previously noise-free, replace the cable supplying the noise. If the noise does not change channels, check the electrometer on the malfunctioning channel by removing the electrometer cable at the FID, resting the cable connector on a surface to prevent contact with the metal frame of the GC. If the noise continues, the electrometer should be serviced. If the noise is eliminated, examine the hydrogen and oxidant systems.
Before Cleaning
Before you disassemble the detector, we suggest you take the following precautions:

- **Think Safety!** Disconnect the power to the detector, and be sure the collector assembly is cool before you begin.
- **Be Prepared!** Have spare detector parts available, as recommended in your instrument manual. Some detectors contain ceramic parts which break easily; and spare parts can minimize downtime should breakage occur.
- **Pay Attention!** Carefully note the distance from the collector assembly to the flame jet. On some detectors this distance is not fixed, and if you inadvertently alter the distance when you reassemble the detector, you can drastically change the FID response. The flame may be difficult to ignite and noise can occur.

How to Clean an FID
To properly clean an FID, you must clean the collector assembly, the jets, the Teflon® or ceramic insulators, and the housing. If the detector has been cleaned recently, a light coat of silica or a single silica flake could be causing the trouble, and only a light cleaning is required. If the detector has not been cleaned recently, a thorough cleaning probably is necessary.

Light Cleaning
There are two ways of removing light coatings of dirt. Both methods are simple and should be attempted before costly instrument downtime is incurred.

Freon® TF Injection: A light coat of silica can be removed by injecting several microliters of Freon TF (Detector Cleaner No. 1, see Ordering Information) into the column while the detector is lit. The Freon is combusted by the flame, producing hydrofluoric acid (HF). The HF converts the silica to a volatile fluoride, cleaning the detector in the process. Freon TF acts best when used on a regular basis, to prevent the buildup of silica, rather than as a cure for a very dirty detector.

Scrubbing: Disassemble the detector and scrub the contamination from the components. The brass wire brushes in our detector cleaning kits (see Ordering Information) will not scratch metal or ceramic parts; use a nylon brush on Teflon parts.
1. Disconnect the power to the detector, and be sure the collector assembly is cool.
2. Remove the collector assembly and brush the collector to remove the deposits.
3. Clean the jets, including the bore, using a brass toothbrush and a fine wire, such as a syringe needle cleaning wire.
4. Clean the electrical contacts, using a fine emery cloth. (Be careful not to bend the contacts.)

Thorough Cleaning
If the light cleaning methods do not adequately clean your FID, a more thorough cleaning is required. Disconnect the power to the detector, allow the detector to cool, then disassemble it.

1. Fill the basin in an ultrasonic cleaning device with a detergent that will effectively remove silica and other contamination from the FID (e.g., a 10:1 water solution of Detector Cleaner No. 2, a surfactant which is especially effective in removing heavy deposits of silica). Immerse the FID parts, except the electrical contacts, and sonicate for 2 hours. You can brush the collector assembly and jets (with nylon or brass brushes) with the cleaning solution during the ultrasonic treatment. After the treatment, rinse the parts with distilled water to remove the detergent, then rinse with acetone to remove the water. Use a fine emery cloth to clean the electrical contacts.
2. Ceramic parts of an FID are best cleaned with aqua regia, a 1:3 mixture of concentrated nitric and hydrochloric acids, at ambient or mildly elevated temperature. Before treatment, remove all metal and rubber from the ceramic parts – aqua regia will attack these. Place the ceramic parts in a beaker half-filled with aqua regia for one hour, then rinse with water and acetone as in step 1. **Exercise extreme caution – aqua regia is extremely corrosive.**
3. After you have cleaned all parts of the detector, check all O-rings and replace them if necessary. Worn-out O-rings will cause gas leaks, which can produce detector noise or an increase in detector contamination. Reassemble the FID, light the flame, and allow the detector temperature to equilibrate at 10°C–50°C higher than the column will reach during typical operation. This will reduce the amount of phase condensing onto the detector parts. Do not exceed the maximum temperature limit of the stationary phase – many columns fit far enough into the detector to expose the phase to these elevated temperatures. Set the proper flow rates for hydrogen and compressed air (refer to the instrument manual), and ignite the flame. Turn on the electrometer and allow a few minutes for warmup. The flame should now be stable and noise-free.

Reducing Detector Noise and Contamination

Conditioning
Most detector noise and contamination is the result of column bleed. The amount of bleed is greatest when the column is initially conditioned. Your detector will remain clean longer if you condition a new column before connecting it to the detector. By-products eluted during conditioning, potentially harmful to the FID, are voided into the oven. Connect the column inlet to the injector as usual. Place a restrictor at the column exit to prevent back diffusion of air into the column (exposure of a heated column to air can destroy the liquid phase). Purge the column with carrier gas at room temperature for a few hours before you begin the temperature program. **Do not allow a combustible carrier gas such as hydrogen, methane, etc. to exit the column into the oven.** Pipe these materials out of the oven and into a hood. (Be sure to attach a restrictor to the outlet of the pipeline in the hood.) Consult the column manufacturer for conditioning details, i.e., duration and temperature of conditioning. **Do not routinely condition new columns at the maximum temperature limit of the stationary phase – this will reduce column life.** Connecting a well-conditioned column to a clean FID should produce good sensitivity. If detector stability quickly degenerates, you should evaluate the quality of your stationary phase and carrier gas.

Stationary Phase
Use GC quality stationary phases whenever possible — they are purified to remove lower molecular weight components. Technical grade materials will bleed more than GC quality materials.
Carrier Gas
Moisture and oxygen in the carrier gas will cause stationary phase
to deteriorate and bleed. Use chromatography-quality gases, and
periodically monitor the gas system for leaks, which might allow
atmospheric oxygen and water to enter the column. For details
on carrier gas purification, ask for Bulletin 848 and Bulletin 918.

Septa
Frequently check the septum for leaks. A leaking septum can allow
oxygen and water to enter the carrier gas and cause the stationary
phase to deteriorate and bleed. To check for leaks without
contaminating the septum (and subsequent samples) with liquid
leak detectors, use an electronic GOW-MAC leak detector (see
Ordering Information. If you run your instrument frequently, we
recommend you change the septum daily. If you change the
septum at the end of the work day you can condition the new
septum overnight. For septa-related information and trouble-
shooting hints, request Application Note 82.

Ordering Information:

Packard Zero Air Generators

Reduce total hydrocarbons to less than 0.1 ppm, stabilizing
baselines and improving detection

CE approved – UL and CSA listed – IEC 1010 certified

These Packard zero air generators produce ultra-high purity
(UHP) air from a standard compressed air supply – at continuous
flow rates up to 3500cc/min, at pressures up to 125psig. We
recommend using a zero air generator with flame ionization
detectors – the resulting noise reduction and improved baseline
stability allow lower detection limits, increasing the sensitivity of
your analyses.

The Packard system consists of three stages: a 0.5µm coalescing
inlet filter removes particles, oil, and water, a heated catalyst
removes hydrocarbons, and a 0.01µm cellulose fiber outlet filter
removes residual particulate material from the product air stream.
Maintenance is minimal – just clean the inlet and outlet filters
every 6 months and change them every 2 years. For replacement
filters, refer to our catalog.

Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packard Zero Air Generators</td>
<td></td>
</tr>
<tr>
<td>Model 1000 (110VAC)</td>
<td>22824</td>
</tr>
<tr>
<td>Model 3500 (110VAC)</td>
<td>27625-U</td>
</tr>
<tr>
<td>Model 1001 (220VAC)</td>
<td>22830-U</td>
</tr>
<tr>
<td>Model 3501 (220VAC)</td>
<td>27626-U</td>
</tr>
</tbody>
</table>

Activated Charcoal Trap

If halocarbons or sulfur-containing compounds might be present
in the source air, we recommend using a Supelpure-HC trap to
avoid contaminating the catalyst in the zero air generator.

Supelpure-HC Trap

1/8" fittings 22445-U
1/4" fittings 22446
Replacement Charcoal, 400cc 22451
Detector Cleaner No. 1

Detector Cleaner No. 1, a halocarbon liquid (Freon TF), cleans your FID in place. Just inject a few microliters into a column that is connected to the lighted detector. The combustion products of the cleaner remove silica deposits from the detector electrodes. Recommended for preventive cleaning. In liquid form, Detector Cleaner No. 1 is useful for removing greases and oils from glassware, syringes, etc.

Detector Cleaner No. 1, 100mL 33000-U

Detector Cleaner No. 2

For removing heavy silica deposits. Immerse silica-coated detector parts in a 1:10 mixture of this surfactant cleaning solution in water, preferably in an ultrasonic bath. The concentrate is an innocuous aqueous solution.

Detector Cleaner No. 2, 100mL 22662

Detector Cleaning Kit

Consists of two brass wire brushes, a brass tube brush for your specific injection port, a brass toothbrush, and a piece of fine emery cloth.

For Hewlett-Packard Models (collector ≈ 0.145" ID) 22403
For Perkin Elmer Sigma Series Models (collector ≈ 0.187" ID) 22405
For Varian Models (collector ≈ 0.235" ID) 22404

Needle and Jet Cleaning Kit

10 wires, each in 5 diameters, plus syringe cleaning solution.

Needle Cleaning Kit 910-0030

Molecular Sieve 5A Water Vapor Traps

These traps efficiently remove water and heavy hydrocarbons from compressed air, electrochemically produced hydrogen, house nitrogen, or other gases with high moisture or hydrocarbon content. 200cc traps are 2’ x 1” (61 x 2.5cm), 750cc traps are 18” x 2 3/8” (45.7 x 6cm). The extended bed length ensures prolonged contact between the gas and the adsorbent. Use the smaller tubes with up to 5 GCs, the larger traps with 6-20 instruments.

Molecular Sieve 5A Water Vapor Traps

200cc, 1/8" Fittings 20619
200cc, 1/4" Fittings 20618
750cc, 1/4" Fittings 23991
750cc, 1/2" Fittings 23992
S-Trap, 1/8" Fittings 503118
Molecular Sieve 5A Refill, 1/2lb./0.22kg 20298
Mounting Clip for 200cc Traps 503231
Mounting Clip for 750cc Traps 24983
Mounting Clip for S-Trap 502901

GOW-MAC Gas Leak Detectors

GOW-MAC Gas Leak Detectors pinpoint leaks by detecting gases that have a thermal conductivity value different from that of air. This clean, efficient method of leak detection completely eliminates the risk of system contamination that can result from using soap solution. These easy-to-use units feature probes designed to reach difficult and confined locations. In the deluxe model, an audible tone alerts you to a leak. An LED bar graph on the handheld mini model visually alerts you to leaks.

Deluxe Model 21-250 22409
Mini Model 21-050 22807
110VAC/60Hz 22808
220VAC/50Hz 22808
Carrying Case for Mini Model 22809

BULLETIN 783

Supelco is a member of the Sigma-Aldrich family. Supelco products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product for a particular use. Additional terms and conditions may apply. Please see the reverse side of the invoice or packing slip.