Recovery of Pharmaceutical Drugs From Small Volume Biological Sample Using HybridSPE-PPT 96-well Plate

Matilal Sarker, Craig Aurand, Xiaoning Lu, and Michael Ye
Supelco, Div. of Sigma-Aldrich, Bellefonte, PA 16823 USA
Presentation Outline

• Introduction
• HybridSPE-PPT for Protein Precipitation and Phospholipid Removal
• Elution Volume and Reproducibility
• Applications
• Conclusion
Phospholipid In Biological Sample

“In the case of LC-MS-MS-based procedures, appropriate steps should be taken to ensure the lack of matrix effects throughout the application of the method…”

Guidance for Industry Bioanalytical Method Validation, FDA, 2001

Bioanalytical chemists routinely monitor for phospholipid fragment ions m/z 184 & m/z 104 during method development/validation

- Used as a marker for ion-suppression risk assessment during LC-MS/MS (co-elution of analytes of interest with matrix-laden regions)
- Determine selectivity effectiveness of sample prep technique

HybridSPE-PPT 96-Well Schematic Diagram

- Removes both phospholipids and precipitated proteins.
- Couples the simplicity of protein precipitation with SPE formats designed for highly selective removal of interfering phospholipids.
- Simple 2-3 step generic procedure—virtually no method development.
- Ideal for high throughput pre-clinical and clinical applications where sample prep speed, selectivity, and reduced ion-suppression is of great importance.
- Unique (patent-pending) technology developed by Supelco.

96-well format employs special frits at the top and bottom of the same selective bed; proteins can be removed on-line for added speed and convenience.
HybridSPE-PPT Interaction

The selective extraction of phospholipids is achieved using a novel zirconia-coated particle technology.

<table>
<thead>
<tr>
<th>Lewis Base</th>
<th>rel. Strength on Zirconia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxide</td>
<td>Strongest</td>
</tr>
<tr>
<td>Phosphate</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td></td>
</tr>
<tr>
<td>Citrate</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td></td>
</tr>
<tr>
<td>Acetate</td>
<td>Weakest</td>
</tr>
<tr>
<td>Formate</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td></td>
</tr>
</tbody>
</table>

Interaction between a representative phospholipid and the zirconium surface of the HybridSPE-PPT particle via a Lewis acid-base interaction.

The Zr atom acts as a Lewis acid (electron acceptor) because it has empty d-orbitals.
In-Well Precipitation Schematic for HybridSPE-PPT

1) Precipitate Proteins: Add 20 µL plasma/serum to the HybridSPE-PPT Small Volume plate followed by 60 µL 1% formic acid in acetonitrile. Add I.S. as necessary. Note: the upper PTFE frit keeps plasma from dripping through packed-bed prematurely.

2) Mix by vortexing HybridSPE-PPT Small Volume plate or by aspirating/dispensing with 0.5-1 mL pipette tip. A cover plate may be used to avoid cross-contamination.

3) Apply vacuum. Packed-bed filter/frit assembly acts as a depth filter for the concurrent physical removal of precipitated proteins and chemical removal phospholipids. Small molecules (e.g., pharma compounds and metabolites) pass through unretained.

4) Resulting filtrate/eluate is free of proteins and phospholipids and ready for immediate LC-MS/MS analysis; or it can be evaporated and reconstituted as necessary prior to analysis.
Phospholipid Removal and Capacity

Sample Preparation:
- 20 µL rat plasma + 60 µL MeOH/1%AF (or ACN/1%FA)+cover
- Mix by shaking at 1000/min for two minutes
- Apply Vacuum 10 inHg for two minutes
- Transfer and analyze by LC-MS-MS
Phospholipid Removal and Capacity (contd.)

<table>
<thead>
<tr>
<th>Plasma Vol (µL)</th>
<th>No. of Sample</th>
<th>Average % removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>8</td>
<td>98.9</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>99.8</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>96.4</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>77.4</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>49.2</td>
</tr>
<tr>
<td>60</td>
<td>4</td>
<td>41.6</td>
</tr>
</tbody>
</table>
Elution Volume

Plate No 1: Crush Solvent – Acetonitrile/1%Formic Acid

<table>
<thead>
<tr>
<th></th>
<th>COL 1</th>
<th>COL 2</th>
<th>COL 3</th>
<th>COL 4</th>
<th>COL 5</th>
<th>COL 6</th>
<th>COL 7</th>
<th>COL 8</th>
<th>COL 9</th>
<th>COL 10</th>
<th>COL 11</th>
<th>COL 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>39</td>
<td>42</td>
<td>34</td>
<td>31</td>
<td>43</td>
<td>35</td>
<td>37</td>
<td>41</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>38</td>
<td>31</td>
<td>44</td>
<td>35</td>
<td>42</td>
<td>40</td>
<td>35</td>
<td>33</td>
<td>40</td>
<td>37</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>C</td>
<td>38</td>
<td>42</td>
<td>43</td>
<td>36</td>
<td>41</td>
<td>41</td>
<td>38</td>
<td>42</td>
<td>34</td>
<td>32</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td>D</td>
<td>34</td>
<td>44</td>
<td>30</td>
<td>43</td>
<td>37</td>
<td>40</td>
<td>36</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>E</td>
<td>28</td>
<td>41</td>
<td>30</td>
<td>43</td>
<td>42</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>35</td>
<td>40</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>F</td>
<td>39</td>
<td>39</td>
<td>36</td>
<td>34</td>
<td>36</td>
<td>41</td>
<td>38</td>
<td>39</td>
<td>35</td>
<td>36</td>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>G</td>
<td>28</td>
<td>32</td>
<td>40</td>
<td>41</td>
<td>38</td>
<td>37</td>
<td>41</td>
<td>42</td>
<td>39</td>
<td>42</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>H</td>
<td>33</td>
<td>36</td>
<td>30</td>
<td>40</td>
<td>31</td>
<td>38</td>
<td>40</td>
<td>31</td>
<td>32</td>
<td>28</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>AVERAGE</td>
<td>33</td>
<td>38</td>
<td>37</td>
<td>38</td>
<td>37</td>
<td>40</td>
<td>38</td>
<td>37</td>
<td>36</td>
<td>36</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>STDEV</td>
<td>4.8</td>
<td>4.7</td>
<td>6.2</td>
<td>3.9</td>
<td>4.5</td>
<td>1.9</td>
<td>2.2</td>
<td>4.0</td>
<td>3.2</td>
<td>4.6</td>
<td>2.4</td>
<td>4.1</td>
</tr>
<tr>
<td>%CV</td>
<td>14.4</td>
<td>12.3</td>
<td>16.7</td>
<td>10.2</td>
<td>12.0</td>
<td>4.7</td>
<td>5.8</td>
<td>10.7</td>
<td>8.8</td>
<td>12.7</td>
<td>6.3</td>
<td>11.9</td>
</tr>
</tbody>
</table>

Overall ave: 36.9
Overall std: 4.1
Volume measured in µL
Elution Volume (contd.)

Sample Preparation:
• 20 µL rat plasma + 60 µL ACN/1%AF+cover
• Mix by shaking at 1000/min for two minutes
• Apply Vacuum 10 inHg for two minutes
• Measure volume by 50 µL HPLC syringe
Sample Preparation:

- Spike compounds into rat plasma at the specific conc.
- Load 20 µL of the spiked rat plasma (make sure the sample was loaded at the bottom of the wells).
- Add 60 µL methanol with 1% ammonium formate
- Mix gently by hand for 1 min
- Cover the plate, and pull the vacuum at 10 inHg for 2 min.
- Transfer 20 µL of the flow-through into a sample vial
- Adjust the sample solvent composite to be compatible with the running LC mobile phase by adding a certain amount of water. For instance, 10 µL water was added to the 20 µL of flow-thru drops sample to adjust the solvent composition to 50% methanol while the running HPLC mobile phase for drops is 60% methanol.
Recovery of Neutral and Basic Compounds
(contd.)

<table>
<thead>
<tr>
<th>Class</th>
<th>Drospirenone 20 ng/mL spike</th>
<th>Risperidone 8 ng/mL spike</th>
<th>Mirtazapine 8 ng/mL spike</th>
<th>Tiapride 8 ng/mL spike</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>103.5</td>
<td>84.3</td>
<td>68.0</td>
<td>25.6</td>
</tr>
<tr>
<td>2</td>
<td>98.3</td>
<td>93.5</td>
<td>74.2</td>
<td>26.8</td>
</tr>
<tr>
<td>3</td>
<td>109.6</td>
<td>92.7</td>
<td>73.8</td>
<td>24.9</td>
</tr>
<tr>
<td>4</td>
<td>115.7</td>
<td>93.3</td>
<td>75.0</td>
<td>28.0</td>
</tr>
<tr>
<td>5</td>
<td>104.0</td>
<td>89.3</td>
<td>70.7</td>
<td>24.3</td>
</tr>
<tr>
<td>6</td>
<td>107.6</td>
<td>93.8</td>
<td>75.6</td>
<td>28.5</td>
</tr>
<tr>
<td>7</td>
<td>101.5</td>
<td>89.9</td>
<td>71.2</td>
<td>26.5</td>
</tr>
<tr>
<td>8</td>
<td>112.9</td>
<td>93.2</td>
<td>73.6</td>
<td>25.6</td>
</tr>
<tr>
<td>Avg</td>
<td>106.6</td>
<td>91.3</td>
<td>72.8</td>
<td>26.3</td>
</tr>
<tr>
<td>STD</td>
<td>5.9</td>
<td>3.3</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>%CV</td>
<td>5.5</td>
<td>3.6</td>
<td>3.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Analysis of Drospirenone

LC-MRM on Q-Trap 3200 w/ Agilent 1100 LC, column Express RP-Amide, 2.1 mm x 5 cm x 2.7 um x 100 A, 20 ng/mL Drospirenone, 3 ul injection

HPLC Isocratic: 60% B
A: 10 mM NH₄FA/0.1%FA in H₂O (pH ~4.5)
B: 10 mM NH₄FA/0.1%FA in MeOH/ACN (1:1)
Sertraline and Norsertraline Recovery

- Column: Ascentis Express 10 cm x 3 mm, 2.7 µm
- Mobile phase A: 65% 10 mM ammonium formate pH 4.3
- Mobile phase B: 35% 10 mM ammonium formate (95:5 acetonitrile-water), pH 4.3
- Flow rate: 600 µL/min
- Temp.: 55 °C
- Det.: MRM Q-Trap 3200
- Inj.: 2 µL
Sertraline and Norsertraline Sample Preparation

1. **Standard** - Standard samples were analyzed as is.
2. **Standard Hybrid** - 80 µL standard samples were taken in each well and pass through and collected in sample collection plate. Samples were transferred in HPLC vials.
3. **Plasma Hybrid** - Spiked rat plasma (20 µL) samples and crush solvent (60 µL), precipitated in plate, pass through and collected in a sample collection plate. Samples were transferred in HPLC vials.
4. **Protein Precipitation** – Spiked rat plasma (20 µL) and crush solvent (60 µL) were taken in centrifuge tube, vortex and centrifuge. Supernatant liquid was taken in HPLC vial.
5. All final of the samples were same (1, 20, 70, 150 and 300 ng/mL)
6. Minimum three samples were in each concentration.
Sertraline and Norsertraline Recovery

Sertraline - Recovery and Reproducibility

Peek Area (counts) vs. Concentration (ng/mL)

- Sertraline-std
- Sertraline-Hybrid
- Sertraline-Pppt
- Sertraline-Hybrid-Plasma
- Linear (Sertraline-Pppt)
- Linear (Sertraline-std)
- Linear (Sertraline-Hybrid)

© 2010 Sigma-Aldrich Co. All rights reserved.
Sertraline and Norsertraline Recovery (contd.)

Norsertraline - Recovery and Reproducibility

- Norsertraline-Hybrid-plasma
- Norsertraline-std
- Norsertraline-Hybrid
- Norsertraline-Pppt
- Linear (Norsertraline-Pppt)
- Linear (Norsertraline-std)
- Linear (Norsertraline-Hybrid)
- Linear (Norsertraline-Hybrid-plasma)

Peak Area (counts) vs. Concentration (ng/mL)
Increasing Throughput for HILIC Applications

1. Venlafaxine
2. Desmethyl venlafaxine

Column: Ascentis Express HILIC 10 cm x 2.1 mm, 2.7 µm, (53939-U)
Mobile phase: 5 mM ammonium formate (10:90 water:acetonitrile) pH 6.87
Flow rate: 0.6 mL/min
Temp.: 35 °C
Det.: Agilent 6210 TOF, ESI+
Inj.: 0.6 µL

Monoisotopic Mass = 277.204179 Da

Venlafaxine [*{BAN}; *{INN}]

Monoisotopic Mass = 263.188529 Da

Desmethyl venlafaxine [*{BAN}; *{INN}]

© 2010 Sigma-Aldrich Co. All rights reserved.
Sample Preparation

Standard Solutions: prepared in (3:1) 1% formic acid acetonitrile:water at a level of 25, 50, 100, 200, 300 ng/mL.

Plasma: spiked directly to a level of 100, 200, 400, 800, 1200 ng/mL.

HybridSPE-PPT Small Volume Plasma Samples: apply 20 µL of plasma to plate, followed by 80 µL of 1% formic acid acetonitrile. Agitate on vortex for 1 minute, place on vacuum manifold and apply 10”Hg vacuum for 2 minutes. Collect filtrate and analyze directly.

HybridSPE-PPT Small Volume Standard Solution: apply 80 µL of standard prepared in (3:1) 1% formic acid acetonitrile:water. Agitate on vortex for 1 minute, place on vacuum manifold and apply 10”Hg vacuum for 2 minutes. Collect filtrate and analyze directly. Samples were prepared n=8.

Standard Protein Precipitation: apply 100 µL of plasma to centrifuge vial, followed by 300 µL of 1% formic acid acetonitrile. Agitate on vortex for 1 minute, place into centrifuge for 2 minutes at 15000 rpm. Collect supernatant and analyze directly.
Phospholipid Monitoring Standard Protein Precipitation

4th Injection of rat plasma

36th Injection of rat plasma
Phospholipid Monitoring HybridSPE-PPT
Small Volume

40th Injection of rat plasma
HybridSPE-PPT Small Volume
Conclusion

• The HybridSPE 96-well plate combines the benefit of protein precipitation and SPE. It removes both proteins and phospholipids simultaneously. The HybridSPE-Small Volume plate allows processing small biological sample (20 to 30 µL).
• The HybridSPE-Small Volume plate demonstrated excellent recovery of most of compounds across the concentration range along with depletion of proteins and phospholipids from the plasma samples.
• Phospholipid buildup and resulting matrix ionization effect was demonstrated when performing standard protein precipitation techniques.
• The combination of facile protein precipitation/phospholipid depletion and fast analysis using modern chromatographic columns shows great promise in increasing the throughput for bioanalytical methods.