Systematic Evaluation of Solid Phase Extraction (SPE) Chemistries for the Determination of Acidic, Neutral, and Basic Drugs

Laura Marlatt, An Trinh, and David S. Bell
Supelco, 595 North Harrison Road, Bellefonte, PA 16823
Solid phase extraction is one of the most widely used tools for sample cleanup. Because it is believed that method development for solid phase extraction is overly time consuming, many scientists choose to follow a generic method using universal supports, such as the most popular phase chemistry, C18. The aim of this study is to explore the differences in various phase chemistries, then utilize their specificity in solid phase extraction. SPE methods were systematically developed for acid, neutral and basic drugs to recognize other phase chemistries that are often overlooked. Three different phase chemistries were utilized. Through methodic wash/elute profiles, advantages and disadvantages of the different phase chemistries were established for a particular sample and matrix. Strategies for improving SPE method development are discussed. The compounds studied were alprenolol, diphenhydramine, hydrocortisone, ibuprofen, nalidixic acid, naproxen and nortriptyline. The derivatives were analyzed by HPLC.
Introduction

SPE methods are frequently developed by copying or modifying an existing application or choosing a generic method. Although these approaches are less time-consuming, they often result in sub-optimal recovery/reproducibility and poor selectivity/sample clean up.

As a result, it can often be very difficult to determine the root cause(s) of a specific problem(s) associated with an SPE method. Some examples include:

• Poor Recovery. Is it due to…
 – Poor retention during sample load?
 – Pre-mature elution during wash?
 – Over retention during elution?

• Poor Reproducibility. Typically caused by one or more inadequate steps. Which one?

• Insufficient clean-up. Stronger wash solvent? Maybe a different SPE phase?
For sample prep methods intended for extensive use (e.g., preclinical and clinical studies), extra effort in SPE method development can save costly reanalysis, redevelopment, and revalidation time.

In this study, 7 representative pharmaceutical compounds (3 basic, 3 acidic, and 1 neutral) were extracted on three different SPE chemistries: C18, C8, and CN followed by HPLC-UV analysis.

Using standards and buffered/organically modified solutions, key variables (pH and percent organic modifier) affecting analyte retention and elution were systematically profiled to determine analyte behavior relative to changing extraction conditions.

By approaching method development systematically, application specific data was generated for more effective method development, optimization, and troubleshooting.
Experimental- Approach
Systematic SPE Method Development

Step 1 - Load Optimization
1. Develop analytical method (Figure A)
2. Screen SPE phases for loadability (compound retention)
3. Analyze load flow-thru for premature compound breakthrough

Step 2 - Establish Optimal Wash and Elution Solvents
1. Load samples according to step 1
2. Systematically profile wash/elute solvents of varying pH and percent organic modifier
3. Analyze for recovery and plot results

Step 3 - Evaluation
1. Determine analyte(s) behavior on sorbent(s) in response to changing extraction conditions
2. Define method, incorporate sample matrix, and optimize/troubleshoot as necessary
The SPE Process

1. Select the Proper SPE Tube or Disk
2. Condition the SPE Tube or Disk
3. Add the Sample
4. Wash the Packing
5. Elute the Compounds of Interest

Phase & Hardware Selection, Condition/Equilbrate, Load Sample, Wash Off Co-Extracted Interferences, Elute Analytes
Figure A. Example Chromatogram of Standard Test Mix

Column: Discovery HS C18, 5cm x 4.6mm ID, 3µm particles

Mobile Phase: (A) 20mM potassium phosphate, pH 2.8; (B) acetonitrile

Flow Rate: 1.0mL/min

Temperature: 35°C

Detection: UV, 220nm

Injection: 20µL

<table>
<thead>
<tr>
<th>Min</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>12</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>35</td>
<td>65</td>
</tr>
</tbody>
</table>

1. Alprenolol
2. Hydrocortisone
3. Diphenhydramine
4. Nalidixic acid
5. Nortriptyline
6. Naproxen
7. Ibuprofen
Load Optimization

SPE:
Discovery DSC-18 96-Well SPE (100mg/well)
Discovery DSC-8 96-Well SPE (100mg/well)
Discovery DSC-CN 96-Well SPE (100mg/well)

1. Prepare standard test mix containing all 7 compounds (20µg/mL spike level) in 20mM potassium phosphate, pH 3 (low pH), pH 7 (neutral pH), and pH 10 (high pH)

2. Condition & equilibrate SPE wells (C18, C8, & CN) with 2mL methanol & DI H₂O

3. Load 1mL of each standard test mix (low, neutral, and high pH)

4. Collect load flow-through eluate & analyze for compound breakthrough via HPLC-UV (see results)
Wash/Elute Profile

SPE: Discovery DSC-18 96-well SPE (100mg/well)
 Discovery DSC-8 96-well SPE (100mg/well)
 Discovery DSC-CN 96-well SPE (100mg/well)

1. Condition & equilibrate SPE wells (C18, C8, & CN) with 2mL methanol & DI H₂O
2. Load 1mL of the 20µg/mL standard test mix, pH 7 (neutral pH)
3. Wash/elute respective wells with 1mL test solvents ranging from 0-100% methanol in 2% NH₄OH, pH 11 (high pH), DI H₂O (neutral pH), and 2% CH₃COOH, pH 3 (low pH)
4. Collect wash/elute eluate & analyze for compound breakthrough via HPLC-UV (see results)
Results

Load Optimization

- Adequate retention was observed for each of the 7 analytes tested on all three SPE chemistries (C18, C8, & CN)
 - Load retention determined by analyzing load flow-through eluate for compound breakthrough via HPLC-UV
 - Shift in load pH (b/w 3-11) did not affect retention during sample load
- A sample load pH of 7 was chosen for all subsequent studies

Wash/Elute Profiles

- Standard test mix samples were loaded onto C18, C8, & CN SPE wells, and eluted with test solvents ranging from 0-100% methanol in 2% acetic acid (low pH), DI water (neutral pH), & 2% NH4OH (high pH).
- Figure B explains the important role of pH in reversed-phase SPE
- The data is organized and visually depicted (Figures C-E)
Ionization of Acidic & Basic Molecules-

Acids (e.g., carboxylic acids):

\[\text{HA (Un-ionized)} \quad \rightleftharpoons \quad \text{H}^+ + \text{A}^- \quad \text{(ionized)} \]

<table>
<thead>
<tr>
<th>pH</th>
<th>@pKa</th>
<th>50%</th>
<th>100%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td></td>
<td>50%</td>
<td>low pH</td>
<td>100%</td>
</tr>
<tr>
<td>high</td>
<td>@pKa</td>
<td>0%</td>
<td>high pH</td>
<td>0%</td>
</tr>
</tbody>
</table>

(e.g., R-COOH ⇌ R-COO⁻)

Bases (e.g., amines):

\[\text{BH}^+ + \text{OH}^- \quad \rightleftharpoons \quad \text{B (Un-ionized)} \]

<table>
<thead>
<tr>
<th>pH</th>
<th>@pKa</th>
<th>50%</th>
<th>100%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td></td>
<td>50%</td>
<td>low pH</td>
<td>100%</td>
</tr>
<tr>
<td>high</td>
<td>@pKa</td>
<td>0%</td>
<td>high pH</td>
<td>0%</td>
</tr>
</tbody>
</table>

(e.g., R-NH₃⁺ ⇌ R-NH₂)

Neutral State (Blue) = promotes hydrophobic (reversed-phase) interaction b/w compound and sorbent
Figure C. Wash/Elute Profile – Basic Compounds

Alpenolol

% MeOH in 2% CH3COOH
% MeOH in DI H2O
% MeOH in 2% NH4OH
Figure C (contd.)

Diphenhydramine

![Chemical Structure of Diphenhydramine]

- % MeOH in 2% CH₃COOH
- % MeOH in DI H₂O
- % MeOH in 2% NH₄OH

Graph:
- X-axis: % MeOH
- Y-axis: Recovery (%)
- Key:
 - Blue: DSC-18 SPE
 - Pink: DSC-8 SPE
 - Yellow: DSC-CN SPE

Legend:
- % MeOH in 2% CH₃COOH
- % MeOH in DI H₂O
- % MeOH in 2% NH₄OH
Figure C (contd.)

Nortriptyline

![Chemical Structure of Nortriptyline]

- % MeOH in 2% CH₃COOH
- % MeOH in DI H₂O
- % MeOH in 2% NH₄OH

Graph:
- Recovery (%) vs % MeOH for DSC-18 SPE, DSC-8 SPE, and DSC-CN SPE.

Legend:
- DSC-18 SPE
- DSC-8 SPE
- DSC-CN SPE

Source:
sigma-aldrich.com
Wash/Elute Profile - Basic Compounds (Fig. C)

- **High pH conditions (%MeOH in 2% NH₄OH)**
 - Basic compounds in their neutral form
 - More strongly retained under reversed-phase conditions
 - Stronger solvents can be used during the wash step to improve selectivity
 - Up to 60% MeOH can be used as a potential wash solvent on C18 and C8 SPE before premature elution occurs, and 20% MeOH for CN SPE

- **Low pH conditions (%MeOH in CH₃COOH)**
 - Basic compounds in their ionized form
 - Ionized form weakens reversed-phase retention
 - Weaker solvents must be used during wash step
 - Maximum wash strength of 20% MeOH is allowable before premature elution occurs
 - Weaker elution solvents may be possible (e.g. 60% MeOH) under low pH conditions improving selectivity and/or allowing for direct-inject protocols (no eluate evaporation/reconstitution)
Wash/Elute Profile - Basic Compounds (contd.)

- **Neutral pH conditions (%MeOH in DI H₂O)**
 - None of the basic compounds eluted on CN SPE
 - CN (cyanopropyl) SPE’s short alkyl chain exposed more silanol groups on the silica sorbent’s surface. The silanol groups acted like weak cation-exchangers.
 - Basic compounds retained via mixed-mode behavior when processed at neutral pH on CN SPE
 - At high and low pH, basic compounds and silanol groups are neutralized, respectively, disrupting secondary ion-exchange behavior
 - Using secondary silanol interactions, researchers can potentially maximize sample clean-up on DSC-CN by first washing with 80% methanol and then eluting with acidified methanol.
Potential Reversed-Phase Protocols for Basic Compounds

DSC-18 SPE
1. Condition/equilibrated with MeOH & DI water
2. Load sample at pH 7
3. Wash with 60% MeOH in 2% NH₄OH
4. Elute with 100% CH₃COOH in MeOH

DSC-8 SPE
1. Condition/equilibrated with MeOH & DI water
2. Load sample at pH 7
3. Wash with 60% MeOH in 2% NH₄OH
4. Elute with 80-100% MeOH in CH₃COOH

DSC-CN SPE
1. Condition/equilibrated with MeOH & DI water
2. Load sample at pH 7
3. Wash with 80% MeOH
4. Elute with 80-100% MeOH in CH₃COOH
Figure D. Wash/Elute Profile – Acidic Compounds

Ibuprofen

% MeOH in 2% CH3COOH
% MeOH in DI H2O
% MeOH in 2% NH4OH
Figure D (contd.)

Nalidixic Acid

% MeOH in 2% CH₃COOH
% MeOH in DI H₂O
% MeOH in 2% NH₄OH

DSC-18 SPE DSC-8 SPE DSC-CN SPE

Recovery (%) vs. % MeOH
Figure D (contd.)

Naproxen

\[
\text{\includegraphics[width=0.3\textwidth]{naproxen_structural_formula.png}}
\]

- % MeOH in 2% CH₃COOH
- % MeOH in DI H₂O
- % MeOH in 2% NH₄OH

![Graph showing recovery vs. % MeOH for different SPE columns](graph.png)
Wash/Elute Profile - Acidic Compounds (Fig. D)

- **Low pH conditions (%MeOH in 2% CH₃COOH)**
 - Acidic compounds in their neutral form
 - More strongly retained under reversed-phase conditions
 - Stronger solvents can be used during the wash step to improve selectivity
 - Up to 40% MeOH can be used as a potential wash solvent on C18 & C8 SPE for naproxen & ibuprofen before premature elution occurs.

- **High pH and neutral conditions (%MeOH in NH₄OH and DI H₂O)**
 - Acidic compounds in their ionized form
 - Ionized form weakens reversed-phase retention resulting in very poor retention on all three SPE chemistries
 - Most of the acidic compounds tested began eluting at very low solvent strengths (0-5% MeOH). This effect was most pronounced on less hydrophobic phases such as CN SPE.
 - Weaker elution solvents may be possible (e.g. 40-60% MeOH) under high/neutral pH conditions improving selectivity and/or allowing for direct-inject protocols (no eluate evaporation/reconstitution).
Potential Reversed-Phase Protocols for Acidic Compounds

DSC-18 SPE
1. Condition/equilbrate with MeOH & DI water
2. Load sample at pH 7
3. Wash with 20% MeOH in 2% CH\textsubscript{3}COOH
4. Elute with 100% MeOH

DSC-8 SPE
1. Condition/equilbrate with MeOH & DI water
2. Load sample at pH 7
3. Wash with 20% MeOH in 2% CH\textsubscript{3}COOH
4. Elute with 100% MeOH

DSC-CN SPE
1. Condition/equilbrate with MeOH & DI water
2. Load sample at pH 7
3. Wash with 20% MeOH in 2% CH\textsubscript{3}COOH
4. Elute with 100% MeOH
Figure E. Wash/Elute Profile – Neutral Compounds

Hydrocortisone

- % MeOH in 2% CH3COOH
- % MeOH in DI H2O
- % MeOH in 2% NH4OH

DSC-18 SPE DSC-8 SPE DSC-CN SPE

Recovery (%) % MeOH

0.0 20.0 40.0 60.0 80.0 100.0

0 5 10 20 40 60 80 100
Because neutral compounds such as hydrocortisone are not ionizable, pH plays a minor role in controlling retention and elution.

On C18 and C8 SPE, up to 40% methanol can be used as a potential wash solvent at all pH levels. On CN SPE, 20% methanol is the maximum wash solvent strength before premature elution occurs.

100% methanol is required to fully elute hydrocortisone on C18 and C8 SPE. 80% methanol can be used to elute hydrocortisone on DSC-CN.
Conclusion

• pH and % organic modifier play a critical role in determining retention and elution of ionizable compounds in reversed-phase SPE.

• More hydrophobic phases such as C18 have a stronger and broader affinity to a wider range of compounds thus allowing for stronger wash solvents. However, stronger elution solvents may be required to elute compounds of interest.

• In contrast, less hydrophobic phases such as CN SPE may require weaker wash solvents, but compounds may be eluted using weaker elution solvents.

• By approaching SPE method development systematically, a greater understanding of analyte behavior relative to changes in extraction conditions is obtained.

• This allows for more effective method development, optimization, and troubleshooting.