Detection of Clenbuterol at Sub-ppb Levels Using Molecularly Imprinted Polymer SPE Methods for Sample Preparation

Olga Shimelis, Craig Aurand, An Trinh, Michael Ye
Supelco/Sigma-Aldrich, Bellefonte, PA
Introduction

- Clenbuterol belong to the class of a beta-agonists
 - known for its growth promoting properties, increases the ratio of muscle-to-fat in farm animals.
 - athletes can abuse clenbuterol because of the anabolic effects it provides.
- Clenbuterol can adversely affect heart and lung functions.
 - It was banned from use in humans and in animal feeds to minimize the population exposure in both USA and EU.
 - Maximum residue limits at trace levels (0.1-0.3 ppb)
- It is necessary to develop a sensitive essay for analysis of clenbuterol in biological matrices such as urine, retina, tissues, etc.
Introduction

• Sample for testing: 0.1 ng/ml in urine

• Different retention mechanisms were evaluated for sample clean-up by Solid Phase Extraction
 - mixed-mode SPE (reversed phase and cation exchange)
 - polymeric SPE (reversed phase)
 - molecular-imprinted polymer SPE (reversed phase, cation exchange, hydrogen bonding)
What are Molecularly Imprinted Polymers?

- Highly cross-linked polymers
- Engineered to extract a single analyte or a class of structurally related analytes of interest with an extremely high degree of selectivity
- Selectivity is introduced during MIP synthesis
 - a template molecule, designed to mimic the analyte, guides the formation of specific cavities or imprints that are sterically and chemically complementary to the analyte(s) of interest
How are MIPs Made?
How is Selectivity Improved Using SupelMIP SPE?

• By careful design of the imprinting site, either by molecular modeling, experimental design, or screening methods, the binding cavities can be engineered to offer multiple interactions with the analyte(s) of interest.

• Multiple non-covalent interaction points (ion-exchange, reversed-phase with polymer backbone, and hydrogen bonding) between the MIP phase and analyte functional groups allow for stronger and more specific analyte retention.

• Improved selectivity is then introduced through the use of stronger wash conditions during sample prep methodology.

• Because extraction selectivity is improved, lower background is observed allowing analysts to achieve lower detection limits.
LC-MS Method
Daughter-ion Formation for Clenbuterol

PARENT
M/Z 277

- H₂O
M/Z 259

- tBu
M/Z 203

- Cl
M/Z 168

MS³ 259/203 scan

Product Ion scan
Experimental
Analytical LC-MS-MS Method

• Instrument: Agilent 1100 Stack with Applied Biosystems 3200 Q-trap
• Column: Ascentis Express-C18, 5 cm x 2.2 mm, 3 um (Supelco)
• Mobile phase: ammonium formate in 80:20 water:acetonitrile at 200ul/min
• Injection: 10 uL
• Ion source conditions: Turbo-Ion spray ESI+, CUR 35, IS 3200, TEM 425, GS1 40, GS2 45, DP 70, EP 10
• MRM transitions monitored in Experiment 1: 277.2/203.1, 277.2/168.2
• Experiment 2: Q3 full ion scan from 150-500 M/Z
Quantification of Clenbuterol

- External calibration curve was constructed with 4 standard solutions.
- Sum of both MRM transitions was used for calibration

\[Y = 3.34 \times 10^3 x + 163 \quad R = 0.9990 \]
General SPE Procedure (illustrated for MIPs)

1. Cartridge Conditioning
2. Sample Load
3. Vigorous Wash Steps
4. Analyte Elution
Molecularly Imprinted Polymer SPE

Molecularly Imprinted Polymer
SupelMIP-Clenbuterol 25 mg/10ml Large Reservoir Cartridge
Condition: 1ml methanol, 1ml water, 1 ml ammonium acetate
Load: urine sample diluted 1:1 with ammonium acetate buffer
Wash: 1 ml of water, Vacuum pulled, 1ml 2% acetic acid in acetonitrile, 1ml 0.5M ammonium acetate buffer pH 5, 1ml 70% acetonitrile in water, Vacuum pulled
Elution: 2 x 1ml 10% acetic acid in methanol, Vacuum pulled between fractions
Evaporate and reconstitute in mobile phase (0.1 ml-1ml)

0.1 ng/ml clenbuterol in urine after SupelMIP SPE cleanup

S/N = 30
Cartridge: generic hydrophobic polymer, 30mg/1ml
Condition: 1 ml methanol, 1 ml water
Load: 1ml human urine, diluted 1:1 with 2% NH₄OH/H₂O
Wash: 1 ml water, 0.5 mL 30:68:2 MeOH:H₂O:NH₄OH
Elute: 2 x 1ml methanol
Evaporate and reconstitute in 0.1-1 ml of the mobile phase
Note: samples were yellow in color
2 monitored MRM transitions for clenbuterol in the sample after polymeric SPE
Mixed-Mode SPE

Mixed-Mode
Cartridge: Supelco Discovery MCAX 100mg/1ml
Condition: 2 ml methanol, 2 ml ammonium acetate (10mM)
Load: urine diluted 1:1 with 10mM ammonium acetate
Wash: 2 ml 10mM ammonium acetate, 2ml 10% acetic acid, 2 ml methanol
Elute: 2x 1 ml 2% ammonium hydroxide in methanol
Evaporate and reconstitute into 0.1-1 ml mobile phase

S/N = 8

0.1 ng/ml clenbuterol in urine cleaned with Mixed-mode SPE
The advantage of the Q-trap LCMS instrument is the possibility of the full range ion scan concurrently with the analyte detection by MRM. Q3 scan was done as experiment 2 in the same period. Most abundant interference peaks were identified in the samples cleaned with SupelMIP SPE.
Interferences from Q3 scan over the time range of clenbuterol peak (1.2-1.5 min) in the samples cleaned with SupelMIP SPE
XIC for 2 major matrix peaks in samples cleaned with different SPE methods.
Recovery of Clenbuterol from Urine at 0.1 ng/ml

<table>
<thead>
<tr>
<th></th>
<th>SupelMIP SPE</th>
<th>Polymeric SPE</th>
<th>Mixed Mode SPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPE sample</td>
<td>104%</td>
<td>137%*</td>
<td>62%</td>
</tr>
</tbody>
</table>

* Integration error due to the overlapping impurity peak

Recovery of Clenbuterol from Urine at 1.0 ng/ml

<table>
<thead>
<tr>
<th></th>
<th>SupelMIP SPE</th>
<th>Polymeric SPE</th>
<th>Mixed Mode SPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPE sample</td>
<td>75%</td>
<td>69%</td>
<td>121%</td>
</tr>
</tbody>
</table>
Investigation of Matrix Effects

- Blank urine samples were cleaned with one of the SPE methods and spiked with clenbuterol directly before analysis.
- The “matrix-matched” samples were compared to the standards prepared in buffer to determine if any ion suppression effects are present.

Recovery of clenbuterol from Post-SPE Spiked Samples at 1 ng/ml

<table>
<thead>
<tr>
<th></th>
<th>SupelMIP SPE</th>
<th>Polymeric SPE</th>
<th>Mixed Mode SPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPE sample</td>
<td>91%</td>
<td>109%</td>
<td>145%*</td>
</tr>
</tbody>
</table>
Summary

• Good recovery values and good clean-up was achieved with SupelMIP SPE. Multiple interactions allow for stronger binding during SPE procedure. The use of stronger washing conditions result in a better sample clean-up

• Interference peaks were observed at MRM 277/203 in samples cleaned with polymeric SPE, the samples looked the dirtiest with yellow color. The background total ion count was the highest for these samples.

• Clean up with mixed-mode SPE resulted in a low recovery (60%) at the 0.1 ng/ml spiking concentration. After evaluation and the absence of the ion-suppression effects, the low recovery should be attributed to the breakthrough losses.
Summary

Evaluation of SPE methods

<table>
<thead>
<tr>
<th></th>
<th>SupelMIP</th>
<th>Polymeric</th>
<th>Mixed-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/N for 0.1 ppb</td>
<td>30</td>
<td>33</td>
<td>8</td>
</tr>
<tr>
<td>Total background</td>
<td>low</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>Recovery at sub-ppb level</td>
<td>good</td>
<td>Good</td>
<td>low</td>
</tr>
<tr>
<td>Matrix ionization effects</td>
<td>None</td>
<td>None</td>
<td>none</td>
</tr>
</tbody>
</table>
Acknowledgments

• Supelco Scientists Carmen Santasania and Daniel Shollenberger for their help with LC-MS work
• MIP Technologies AB, Sweden for development MIPs and the SPE methods for using MIPs