For more information, or current prices, contact your nearest Supelco subsidiary listed below. To obtain further contact information, visit our website (www.sigma-aldrich.com), see the Supelco catalog, or contact Supelco, Bellefonte, PA 16823-0048 USA.

ARGENTINA: Sigma-Aldrich de Argentina, S.A. • Av. Pueryredon 2446/50 • Piso 5-B • Buenos Aires 1119
AUSTRALIA: Sigma-Aldrich Pty. Ltd. • Unit #2, 14 Anella Avenue • Castle Hill NSW 2154
AUSTRIA: Sigma-Aldrich Handels GmbH • Hebelplatz 7 • A-1110 Wien
BELGIUM: Sigma-Aldrich N.V./S.A. • K. Cardijplein 8 • B-2880 Bornem
BRAZIL: Sigma-Aldrich Quimica Brasil Ltda. • Rua Sabara, 566-Coi. 53 • 01239-010 São Paulo, SP
CANADA: Sigma-Aldrich Canada, Ltd. • 2149 Winston Park Dr., Oakville, ON L6H 6J8
CZECH REPUBLIC: Sigma-Aldrich a.s.s.o. • Potreznice 46 • 186 21 Praha 8
DENMARK: Sigma-Aldrich Denmark A/S • Vejlegaardsvej 65B • DK-2666 Vallensbaek Strand
FINLAND: Sigma-Aldrich Finland-YA-Kemia Oy • Teerisuroalue 4 • FIN-00700 Helsinki
FRANCE: Sigma-Aldrich Chimie • Chromatographie Supelco • L’île d’Abbeau Chesnes • B.P. 701 • 38297 Saint-Quentin Fallavier Cedex
GERMANY: Sigma-Aldrich Chemie GmbH • Geschäftsbereich Supelco • Grünwalder Weg 30 • D-82041 Deisenhofen
GREECE: Sigma-Aldrich (O.M.) Ltd. • 72 Aragonia Str. • 16346 Ilissoupolis, Athens
HUNGARY: Sigma-Aldrich Kft. • Nagy Dóta u. 7. • H-1067 Budapest
INDIA: Sigma-Aldrich Co. • Survey No. 31/1, Siharapamaaplaya • Mahadevapura P.O. • Bangalore 560 048
IRELAND: Sigma-Aldrich Ireland Ltd. • Airton Road • Tallaght • Dublin 24
ISRAEL: Sigma Israel Chemicals Ltd. • Park Rabin • Rehovot 76100
ITALY: Sigma-Aldrich s.r.l. • Via Gallarate, 154 • 20151 Milano
JAPAN: Sigma-Aldrich Japan K.K. • Division Supelco • Jr. Nihonbashbi Building • 1-10-15 Nihonbashi Horidome-cho, Chuo-ku • Tokyo 103
KOREA: Sigma-Aldrich Korea • Samhan Campus Annex, 10th Floor • 17-26 Yoido-dong, Yungdeungpo-gu • Seoul
MALAYSIA: Sigma-Aldrich (M) Sdn. Bhd. • 9-2, Jalan 2122B, Taman Gembira • OF Jalan Kuchai Lama • 58200 Kuala Lumpur • Selangor
MEXICO: Sigma-Aldrich Química S.A. de C.V. • Calle 6 North No. 107 • Parque Industrial Toluca 2000 • 50200 Toluca
NETHERLANDS: Sigma-Aldrich Chemie BV • Postbus 27 • 3330 AA Zwijndrecht
NORWAY: Sigma-Aldrich Norway • Sandakerveien 102 • N-0943 Oslo
POLAND: Sigma-Aldrich Sp. z o.o. • Szelagowska 30 • 61-626 Poznań
PORTUGAL: Sigma-Aldrich Quimica S.A. • P.O. Box 131 • Sintra 2710
RUSSIA: Sigma-Aldrich Russia • TOO Technobiochem • Makarenko Str. 2/21 • Building 1, Flat 22 • Moscow 103062
SINGAPORE: Sigma-Aldrich Pte. Ltd. • 102E Pasir Panjang Road • #08-01 CitiLink Warehouse • Singapore 118529
SOUTH AFRICA: Sigma-Aldrich (pty) Ltd. • Cnr Kelly & Ackerman Streets • Southern Life Industrial Park Unit • Unit 16/17 • Jet Park 1459
SPAIN: Sigma-Aldrich Quimica, S.A. • Apt. Correos 161 • 28100 Alcobendas, Madrid
SWEDEN: Sigma-Aldrich Sweden AB • Söderforsvägen 14C • 135 70 Stockholm
SWITZERLAND: Supelco Switzerland • Industriestrasse 25 • P.O. Box 260 • CH-9471 Buchs
UNITED KINGDOM: Sigma-Aldrich Company Ltd. • Supelco UK • Fancy Road, Poole • Dorset BH12 4QH
UNITED STATES: Supelco • Supelco Park • Bellefonte, PA 16823-0048 • Phone 800-247-6628 or 814-359-3441 • Fax 800-447-3044 or 814-359-3044 • email:supelco@sial.com

This article is archived from a past issue of The Supelco Reporter. Information in the article was appropriate at the time of publication, but product specifications, catalog numbers, and availability may have changed over time.

If you have questions about applying methodology described in this article to a current application, please contact our technical service chemists.
New Interface Combines Solid Phase Microextraction with HPLC

R. Shirey, L. Nolan, R. Mindrup

A new SPME/HPLC interface enables HPLC analysts to take advantage of the time and solvent savings offered by SPME. Through the interface, mobile phase contacts the SPME fiber, removes the adsorbed analytes, and delivers them to the column for separation. Analytes can be desorbed in a moving stream of mobile phase (dynamic desorption), or the fiber can be soaked in mobile phase for a specific period of time before the material is injected onto the column (static desorption). In experiments to date with our current selection of bonded phase SPME fibers, neither dynamic desorption nor static desorption was detrimental to the fiber, and the ferrule in the interface did not leak at pressures to approximately 5400psig.

Since its introduction three years ago, solid phase microextraction (SPME) has rapidly been established among the practical alternatives for sample preparation for gas chromatography. Because virtually no solvent is used (Figure A), SPME saves preparation time and preparation costs, and often improves the limits of detection in an analysis. Many analytes that can be analyzed by GC have proven to be effectively extracted by SPME. However, many weakly volatile or thermally labile compounds cannot be analyzed by GC. Pharmaceutical compounds, polynuclear aromatic hydrocarbons, and numerous other analytes are more effectively monitored by HPLC but, until now, there was no simple way to introduce analytes extracted by SPME onto an HPLC column.

A new SPME/HPLC interface developed at Supelco now enables HPLC analysts to take advantage of the time and solvent savings offered by SPME. The interface consists of a six-port Valco® injection valve and a desorption chamber (Figure B) that replaces the injection loop in the HPLC system. Easily installed and removed, the desorption chamber includes a PEEK needle guide, a stainless steel body and compression cap, a double-tapered VESPEL® ferrule, and a sealing clamp. The SPME fiber is introduced into the desorption chamber under ambient pressure when the injection valve is in the “load” position. After the SPME fiber is inserted through the ferrule, the unit is made leak-tight by closing the clamp and compressing the ferrule against the SPME needle. All surfaces which come in contact with the SPME fiber or the mobile phase are stainless steel or VESPEL.

In SPME/GC, analytes are thermally desorbed from the SPME fiber in the heated injection port. The new SPME/HPLC interface enables mobile phase to contact the SPME fiber, remove the adsorbed analytes, and deliver them to the column for separation. Analytes can be removed in a moving stream of mobile phase (dynamic desorption) or, when analytes are more strongly adsorbed to the fiber, the fiber can be soaked in mobile phase or another, stronger solvent for a specific period of time (e.g., 1 minute) before the material is injected onto the column (static desorption). In experiments to date with our current selection of bonded phase SPME fibers, neither desorption technique was detrimental to the fiber. Pressures to approximately 5400psig did not cause leaks at the double-tapered ferrule.

Analysts at the University of Waterloo (Ontario, Canada) effectively extracted and analyzed polynuclear aromatic hydrocarbons (1) and nonylphenol ethoxylate surfactants (2) using SPME/HPLC. Chemists in Supelco laboratories evaluated the practicality of the technique for monitoring explosives residues in water. They used an SPME fiber with a 65µm polydimethylsiloxane/divinylbenzene coating to extract explosives from water containing 27% sodium chloride (20 minutes, rapid stirring). After inserting the fiber into the SPME/HPLC interface, and with the injection valve in the “load” position, they filled the desorption reservoir with 200µL of 50:50 acetonitrile:water, allowed the fiber to soak in the solvent for 1 minute, then switched the valve to the “inject” position and began integration. After 10 minutes, the valve was returned to the “load” position, the desorption chamber was flushed and refilled, using
500μL of 50:50 acetonitrile:water (200μL remains in the interface), and the SPME fiber was removed. After a 1-minute air drying period, the fiber was ready to use for the next extraction.

The analysis was performed on a 15cm x 4.6mm ID SUPELCOSIL™ LC-8 column (3μm particles). Peaks for the analytes, present in the water sample at 50ppb each, were symmetric, sharp, and easily discerned, indicating efficient transfer from the SPME fiber to the HPLC column (Figure C).

If your HPLC analyses call for time-consuming and expensive solvent-based extractions, SPME may very well prove to be a better approach. Several investigators have already established that SPME can be effective for monitoring drugs and drug metabolites in biological fluids (for an example – amphetamines in urine – ask for free Application Note 83), and we feel the new SPME/HPLC interface will accelerate the development of new pharmacological and food and beverage applications. As always, our Technical Service scientists are ready to help you make an informed decision.

References
2. Boyd-Boland, A.A. and J.B. Pawliszyn, SPME Coupled with HPLC for the Analysis of Nonylphenol Ethoxylate Surfactants in Water. For information, contact the authors at The Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

References not available from Supelco.

Figure B. SPME/HPLC Interface: Desorption Chamber

Figure C. Explosives in Water, Using SPME/HPLC

Ordering Information:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPME/HPLC Interface</td>
<td>57350-U</td>
</tr>
<tr>
<td>SUPELCOSIL LC-8 HPLC Column</td>
<td>58983</td>
</tr>
<tr>
<td>SPME Holder (autosampler/HPLC)</td>
<td>57331</td>
</tr>
<tr>
<td>SPME Fiber</td>
<td>57311</td>
</tr>
<tr>
<td>Explosives Standards</td>
<td></td>
</tr>
<tr>
<td>Formulated for US EPA Method 8330, 100μg/mL each analyte in acetonitrile</td>
<td>47283</td>
</tr>
<tr>
<td>EPA 8330 Mix A (8 analytes), 1mL</td>
<td>47284</td>
</tr>
<tr>
<td>EPA 8330 Mix B (6 analytes), 1mL</td>
<td>47284</td>
</tr>
</tbody>
</table>

*First time SPME users must order an SPME fiber holder in addition to SPME fibers. The holder is reusable indefinitely. To see our complete selection of nonpolar, intermediate polarity, and polar SPME fibers, refer to the Supelco catalog.

*Also used with Varian 8100/8200 AutoSampler.

References
2. Boyd-Boland, A.A. and J.B. Pawliszyn, SPME Coupled with HPLC for the Analysis of Nonylphenol Ethoxylate Surfactants in Water. For information, contact the authors at The Guelph-Waterloo Centre for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

References not available from Supelco.