This article is archived from a past issue of The Supelco Reporter. Information in the article was appropriate at the time of publication, but product specifications, catalog numbers, and availability may have changed over time.

If you have questions about applying methodology described in this article to a current application, please contact our technical service chemists.
Post-Column Photochemical Reaction Enhances Detection in HPLC Assays of Tamoxifen or Aflatoxins

T. Ascah, Liquid Separations, Supelco, Bellefonte, PA, USA
H. Joshua, Aura Industries, Inc., Staten Island, NY, USA

Some pharmaceutical and biological analytes exhibit UV absorption maxima at wavelengths at which impurities also absorb. Serum and urine components, for example, can interfere with detection at shorter wavelengths (e.g., 220nm). Post-column photochemical reactions can be used to detect analytes at longer UV wavelengths (1) and, potentially, to increase UV, fluorescence, electrochemical, and other detector sensitivity for compounds that must be monitored at low concentrations.

Aura Industries’ Photochemical Reactor Enhancement Detection system (PHRED) can enhance analyte detection under these difficult circumstances. Connected between the HPLC column and the detector, the PHRED unit performs continuous on-line photolytic derivatization. The unit includes a 254nm low pressure mercury lamp, a lamp holder, a knitted PTFE reactor coil in which derivatization takes place, and a holder for the reactor coil (Figure A). Analysts at Aura Industries recently developed conditions for using the PHRED system in two important applications: monitoring the pharmaceutical compound tamoxifen and monitoring aflatoxins.

Tamoxifen, a nonsteroid estrogen antagonist, is widely used in treating breast cancer. The underivatized drug and its major metabolite, 4-hydroxytamoxifen, are undetected by fluorescence (Figure B). With post-column photolytic derivatization, however, detection at therapeutic levels is highly reliable.

Aflatoxins are of major concern as potentially carcinogenic contaminants in many food products. Figure C shows an analysis of aflatoxin standards, using the PHRED system. Note that the temperature in the reactor coil can be elevated – this minimizes peak spreading and backpressure in the coil. Relative to the peak width with the column connected directly to the detector, the peak width for aflatoxin B₁ is increased by less than 6% when the eluent is passed through the 25-meter coil. PHRED can be used in simultaneous HPLC analysis of aflatoxins, zearalenone, and ochratoxin A (2).

A PHRED unit can effectively improve analyte detection in the presence of interfering matrix components, or when the analytes are present at low concentrations.

Reprinted from Volume 16, No. 3, 1997

References

References not available from Supelco.

Figures B and C provided by Dr. Henry Joshua, Aura Industries, Inc., Staten Island, NY.

SUPELCOSIL is a trademark of Sigma-Aldrich Co.