Mass Spectral Column Bleed in Nitrogen-Containing Polar-Embedded HPLC Stationary Phases

Carmen T. Santasania and David S. Bell
csantasania@sial.com, dbell@sial.com

Introduction

Liquid chromatography-mass spectrometry (LC-MS) has become one of the most important tools in the analytical chemistry laboratory over the past decade. The structural information obtainable along with sensitive detection has made the technique indispensable in pharmaceutical, environmental and a wealth of other scientific disciplines.

HPLC column bleed is a major source of background signal in LC-MS analyses. This phase bleed occurs when the bonded phase elutes from the column during the analysis. The bleed may originate from acid hydrolysis of the bonded phase at low mobile phase pH values or from dissolution of the silica substrate under more basic conditions. Most column manufacturers recommend using silica-based columns between pH 2 and 7.5, however, hydrolysis of C18 phase may occur using mobile phases at pH 2-3 and slow dissolution of the silica substrates occurs in the commonly used pH range.

In this report, we examine the extent of stationary phase bleed for several commercially available, nitrogen-containing polar-embedded phases. The study utilizes a low pH mobile phase to induce hydrolysis of the bonded phase along with gradient elution to ensure elution of any liberated phase material. Prior to analysis, each of the columns used in this study were exhaustively washed and stored in 50:50 methanol:water for two days. This procedure reduces the probability of observing bleed from sources other than that due to stationary phase instability.

Experimental

Bleed analyses were performed on a Waters® (Milford, MA USA) 2795 HPLC system coupled to a Waters Micromass ZQ mass spectrometer via an electrospray ionization (ESI) interface.

Figure A. Accumulated Mass Spectra for Ascentis™ RP-Amide and Urea Polar Embedded Stationary Phases

(continued on page 2)
an electrospray interface. The interface was operated in positive ion mode and an m/z range of 50 to 1500 was acquired. Acetonitrile and water (Riedel-de Haën®, Seelze, Germany) were of LC-MS grade. Formic acid obtained from the same supplier was of HPLC grade. Prior to each column bleed analysis, a blank run using no column in line was acquired to establish responses due to system impurities. Each column was subsequently subjected to five gradient cycles. HPLC conditions are shown in Figure A.

Results and Discussion

The information-rich LC-MS experiments are difficult to present in their entirety. For brevity, the combined mass spectra for each run were obtained by accumulating the spectra over the time range of 14-16 minutes. It is in this time frame where the greatest concentration of mass responses due to phase bleed is observed. In addition, the spectral responses in this report are presented in the range of m/z 200-600. Presentation of the data in this range avoids complications due to abundant mass responses at low m/z ranges originating from system contamination.

The mass spectrum obtained using the Ascentis RP-Amide stationary phase is compared to the urea polar-embedded phase response in Figure A. The Ascentis RP-Amide spectrum demonstrates a limited number of mass responses due to column bleed in this region.

Table 1 lists the significant mass responses that were not observed in blank runs for the Ascentis RP-Amide column and several commercially available amide, carbamate, and urea polar-embedded phases. The Ascentis RP-Amide phase exhibits three mass responses that can be attributed to stationary phase bleed (m/z 355, 359 and 377). The analysis from a commercially available urea polar-embedded phase shows numerous intense mass spectral bleed responses when compared to other commercially available polar-embedded columns. Low stationary phase bleed results in improved detection of trace impurities, facilitates mass spectral interpretation, and minimizes downtime due to source contamination.

Conclusions

In this study we have examined LC-MS bleed characteristics of nitrogen-containing polar-embedded stationary phases. The results demonstrate that the Ascentis RP-Amide phase exhibits fewer and less intense mass spectral bleed responses when compared to other commercially available polar-embedded columns. Low stationary phase bleed results in improved detection of trace impurities, facilitates mass spectral interpretation, and minimizes downtime due to source contamination.

Table 1. Mass Responses and Intensities Attributed to Stationary Phase Bleed

<table>
<thead>
<tr>
<th>Column</th>
<th>Mass Responses (m/z)</th>
<th>Intensity at Mass to Charge Response (cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascentis RP-Amide (m/z)</td>
<td>355, 359, 377</td>
<td>614E+05, 579E+05, 725E+05</td>
</tr>
<tr>
<td>Urea Phase (m/z)</td>
<td>228, 271, 332, 350, 372</td>
<td>166E+06, 119E+06, 115E+06, 807E+06, 417E+06</td>
</tr>
<tr>
<td>Carbamate Phase (m/z)</td>
<td>249, 273, 291, 355</td>
<td>174E+06, 198E+06, 138E+06, 152E+06</td>
</tr>
<tr>
<td>Amide Phase (m/z)</td>
<td>369</td>
<td>130E+06</td>
</tr>
</tbody>
</table>

For the full details on Supelco’s NEW Ascentis HPLC Columns, request the Ascentis brochure, T404114 (HLV).

To subscribe to the NEW Ascentis Application Notebook with over 90 applications on Ascentis C18 and RP-Amide phases, request T404125 (HNU).
Carbon adsorbents exhibiting a broad range of adsorption strengths and surface areas are becoming increasingly popular with analytical chemists and research scientists performing thermal/solvent desorption and purge and trap applications for environmental monitoring. Newly developed methodology for solid phase extraction (SPE) using carbon adsorbents has also shown effective performance for liquid sample preparation (1,2,3). Because there are a wide variety of carbon based adsorbents and choosing the proper adsorbent to use for an application is critical to the success of an analysis, we have developed three carbon adsorbent kits along with an Adsorbent Selection Guide (see Related Information) to aid researchers with the development of air sampling traps or tubes. Two of the kits are composed of graphitized carbon blacks—Carbotrap™ and Carbopack™ and the third kit contains carbon molecular sieves—Carboxen™ and Carbosieve™.

The Carbotrap Kit consists of five (20/40 mesh) graphitized carbon black adsorbents while the Carbopack Kit consists of six (60/80 mesh) graphitized carbon black adsorbents with a range of surface areas and adsorption strengths. Selecting an adsorbent of the proper surface area and desorption strength is critical to efficiently trapping and releasing the compounds of interest. Carbotrap and Carbopack are high purity graphitized carbon blacks that are exclusive to Supelco. A surface area range from 5 – 240 m²/g for the graphitized carbons included in the kits will allow a broad range of adsorbent strength options. In addition, the graphitized carbon selection of Carbopack F, C, Y, and B are nonporous adsorbents while Carbopack Z and X have some porosity and offer increased adsorption strength. Of particular interest is Carbopack X, a newly developed graphitized carbon that displays an extended analyte retention response when compared to Carbopack B. For example, the recovery of 1,3-Butadiene from Carbopack X is excellent even at large sample volumes, which in turn extends the method detection limits. Finally, all of the graphitized carbons presented in these kits are hydrophobic and are good choices when sampling in an environment where high humidity exists or when extracting organics from aqueous environments.

The Carbon Molecular Sieve Kit contains Carboxen and Carbosieve adsorbents. Both high purity spherical polymer carbons are exclusive to Supelco. Table 1 shows the physical properties of the adsorbents for each kit. Most of the Carboxen

(continued on page 4)
Figure A. Supelco Carbon Molecular Sieve Sample Kit

(continued from page 3)

grades, with the exception of Carboxen-1018 and 1021, are multi-porous adsorbents designed specifically to efficiently retain and release only analytes with low boiling points. The CarboSieve adsorbents have a unique pore structure in combination with a high surface area and are very strong adsorbents. Both Carboxen and CarboSieve may require having a bed of weaker adsorbent, such as Carbopack, placed in front, to prevent analytes with high boiling points from reaching the pores of the molecular sieve adsorbent during sampling. In addition, within this kit we offer our newest adsorbent, Carboxen-1016, a graphitized polymer carbon. This carbon molecular sieve adsorbent demonstrates excellent performance across both a wide range of analytes and sample volumes.

The proper selection of the adsorbent components of adsorptive multi-bed traps is critical to the efficient retention and release of targeted analytes within the sample matrix. The Carbon Adsorbent Kits were developed to provide the analyst the largest practical number of adsorbent bed combinations in order to ensure nearly complete analyte coverage. The combination of the new Carbon Adsorbent Kits and Supelco’s practical Adsorption Selection Guide allows the researcher to increase productivity by reducing the time necessary to develop and customize new multi-bed tubes for air and liquid sample preparation applications.

References

Carbon Adsorbent Kits

<table>
<thead>
<tr>
<th>Description</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbopack Kit (60/80 mesh graphitized carbon black)</td>
<td>13026-U</td>
</tr>
<tr>
<td>Carbotrap Kit (20/40 mesh graphitized carbon black)</td>
<td>13027-U</td>
</tr>
<tr>
<td>Carbon Molecular Sieve Kit</td>
<td>13028-U</td>
</tr>
</tbody>
</table>

Related Information

For more information on adsorbents, request Characterization of Adsorbents for Sample Preparation Process, T402026 (EQG) and A Tool for Selecting an Adsorbent for Thermal Desorption Applications, T402025 (HKZ).

Did you know…?

The inlet liner used for a capillary split/splitless injection is critical to the proper transfer, vaporization and movement of the injected sample through the liner. New FocusLiners™ are the recommended inlet liners for improving the reproducibility of a capillary analysis. The key to the improved reproducibility provided by these liners is the proper positioning of the glass wool in the liner and due to the positioning, the ability to wipe the end of the syringe needle during the injection.

Related Products

Sampling and Desorption Tubes

<table>
<thead>
<tr>
<th>Description</th>
<th>Qty.</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynatherm Standard Sampling Tubes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty fritted tube, 6 mm O.D. x 4.5", 4 mm I.D.</td>
<td>3</td>
<td>20380-U</td>
</tr>
<tr>
<td>Empty non-fritted tubes, 6 mm O.D. x 4.5", 4 mm I.D.</td>
<td>5</td>
<td>20235-U</td>
</tr>
<tr>
<td>VOST Stack Sample Tube</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty VOST tube, 16 mm O.D. x 5", (1/4" O.D. ends)</td>
<td>1</td>
<td>21993</td>
</tr>
<tr>
<td>Thermal Desorption Tubes for PerkinElmer Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty SS tube without caps, 1/4" O.D. x 3.5", 5 mm I.D.</td>
<td>1</td>
<td>25049</td>
</tr>
<tr>
<td>Empty SS tubes with TMX brass storage caps, 1/4" O.D. x 3.5", 5 mm I.D.</td>
<td>50</td>
<td>28015-U</td>
</tr>
<tr>
<td>Empty glass tube without caps, 1/4" O.D. x 3.5", 4 mm I.D.</td>
<td>1</td>
<td>25084</td>
</tr>
<tr>
<td>Empty glass tubes with TMX brass storage caps, 1/4" O.D. x 3.5", 4 mm I.D.</td>
<td>50</td>
<td>28013-U</td>
</tr>
<tr>
<td>Thermal Desorption Tubes for Tekmar®-Dohrmann Instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty SS tube, 1/4" O.D. x 7" long, 5 mm I.D.</td>
<td>1</td>
<td>20920-U</td>
</tr>
<tr>
<td>Empty SS tube, 1/2" O.D. x 7" long, 12 mm I.D.</td>
<td>1</td>
<td>20924</td>
</tr>
<tr>
<td>Empty glass tube, 1/4" O.D. x 7" long, 4 mm I.D.</td>
<td>1</td>
<td>20918</td>
</tr>
<tr>
<td>Empty glass tube, 1/2" O.D. x 3.5" long, 10 mm I.D.</td>
<td>1</td>
<td>20922</td>
</tr>
<tr>
<td>Thermal Desorption Tubes for the Gerstel® ThermoDesorption System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty SS non-fritted tubes</td>
<td>1</td>
<td>28276-U</td>
</tr>
<tr>
<td>Empty glass fritted tubes</td>
<td>1</td>
<td>28286-U</td>
</tr>
<tr>
<td>Empty glass non-fritted tubes</td>
<td>1</td>
<td>28287-U</td>
</tr>
</tbody>
</table>

For a complete listing of all Sigma-Aldrich products, log on to our website: sigma-aldrich.com
New Environmental Standards Offering

Vicki Yearick
vyearick@si.com

Supelco is pleased to introduce 300 new analytical standards for environmental analyses. These new formulations resulted from working closely with key customers to develop environmental standards that provide better solutions for popular, everyday analyses. The new formulations include volatiles, pesticides, herbicides, semi-volatiles, Aroclors®, and hydrocarbons and are appropriate for use with current US EPA 500, 600, and 8000 series, and CLP methodologies. They are being offered in an assortment of neat, single component and multi-component solutions, and kits. Separate Source™ standards for several mixes will also be available.

Quality - Built into Every Product

These new environmental standards are manufactured using the same quality processes and practices that we employ for all of our chemical standard products.

- Only the highest purity raw materials are used; most are ≥ 99%.
- Precise gravimetric measurements and volumetric dispensing tolerances no greater than 0.5% of target.
- Gravimetric measurements are made on balances that have been calibrated with NIST traceable weights.
- Quantitative testing is performed by GC or HPLC using a reference batch method.
- Shelf life is determined by both accelerated and real-time stability studies.

Certification and Documentation

Each standard is backed by certification and documentation.

- A certificate of analysis (COA) summarizes the QA analysis of the final product for purity, component identity, and concentration.
- Certificate of composition (COC) provides a summary of gravimetric preparation of the final product.
- A 16 Chapter MSDS is provided with the first purchase of each product.
- FREE data packets are available upon request.
- Online COAs can be accessed for free, at anytime, through our website sigma-aldrich.com

Separate Source Standards

This new standards line includes over two dozen Separate Source standards. Separate Source products have identical formulations, but are prepared from independently sourced raw materials, and are independently quality controlled. An example is shown in Figure A. These standards provide the convenience of working with Supelco as a single vendor while enabling you to meet independent audit requirements of the US EPA.

Pricing

This new product offering has been competitively priced. We invite you to take a look at the price advantages offered between 1mL and larger volume package sizes. We believe you will be pleased.

Related Information

For a free listing of these new environmental standards, request Environmental Standards 2004-2005 Price List, T404137 (HUP), visit sigma-aldrich.com/env-stds or call 800-359-3041 / 814-359-3041.
Related Products: Chemical Accessories

Glass Magnet™ Products

The Glass Magnet Vial Holder helps to prevent sample vials and ampuls from being accidentally tipped over. This product is made with a tacky material that temporarily anchors glass products to any dry, smooth surface. Simply press it to your work surface, then press the bottom of a dry glass vessel onto a smooth portion of the magnet. The glass vessel holds securely in place while you remove the cap or withdraw the sample.

Our Glass Magnet Sheet prevents your glass apparatus from being knocked over accidentally. This 2’ x 2’ sheet is made of the same material as the glass magnet holder. It can be cut with a razor blade or utility knife to fit strategically on counter tops or in drawers containing fragile glassware.

Ampul Breaker/Collar

This inexpensive tool safely removes the tops of chemical standard glass ampuls. Simply insert the ampul in the breaker and snap the top off. Ampul top is retained in the collar for safe disposal.

Crimp Top Vials, 6.0 mm Opening

This 6.0 mm wide mouth vial offers greater accessibility to the sample than a standard crimp top vial while reducing autosampler needle damage. The extra wide opening permits easy insertion of a pipette tip for sample transfer or the use of polypropylene inserts.

Hamilton® 700 Series Six Packs

The most popular syringes are available in convenient multi-unit packages, at considerable cost-savings. Accurate to ±1 %. Temperature limit: 50 °C for cemented needles (N), 115 °C for removable needles (RN).

10 µL capacity, 26g gauge, 51 mm length, point style #2.

Supelco’s 5th Edition SPME Applications CD is now available

The CD is a comprehensive list of literature on SPME as well as references on the use of Solid Phase Microextraction (SPME) for sampling and analysis. The SPME Applications CD is a comprehensive list of technical literature with publications such as; Guide to Quantitation with SPME, Flavor Compounds, Drugs in Biological Fluids, Forensic Analysis, and Theory and Optimization of Conditions. The CD also includes references for over 1500 applications utilizing SPME in areas such as; Food & Beverage, Flavors & Fragrances, Forensic Analysis, Toxicology, Pharmaceutical/Biotech, Environmental and Pesticides/Herbicides.

For a FREE copy of the 5th edition SPME Applications CD, request CJQ or visit sigma-aldrich.com/supelco-spme
Solid Phase Microextraction (SPME) has grown significantly over the last 10 years. The CTC CombiPAL™ is a valuable tool for high volume sample analysis using SPME. However, the sample agitator on the CombiPAL, which increases sample adsorption efficiency, can significantly stress the fiber, leading to fiber damage and shorter fiber life.

A new SPME fiber assembly has been developed that contains a special metal alloy in the needle, plunger, and fiber core. This metal alloy adds significantly greater strength resulting in 7 to 10 times longer fiber assembly life. The new material also allows us to improve the fiber manufacturing process, resulting in better inter and intra-lot reproducibility leading to greater overall reproducibility in analytical results. While some customers may be concerned that certain analytes might break down by contact with metal in a hot injection port, we have demonstrated that this new metal alloy is equally inert when compared to existing fused silica and StableFlex materials.

The increased assembly life results from a fiber assembly made of individual components such as the plunger, needle and fiber core that utilize this special metal alloy. In a side-by-side evaluation under the same conditions, the metal assemblies were able to perform a minimum of 350 extraction/desorption cycles without breaking compared to 30-40 cycles for the silica based fibers with stainless steel assemblies.

Using the metal fiber as the core material also allowed us to optimize the fiber coating process. The new continuous process controls many variables. Carboxen-PDMS fibers have been particularly difficult to coat reproducibly due to many bonding variables. Table 1 shows the comparison of lots of Carboxen-PDMS fibers prepared with the old and new coating process. As Table 1 shows, the relative standard deviation of the assemblies made by the new process have less than half the variation as compared to those made by the older process.

Another significant advantage of the metal alloy is that it is an inert metal that does not contain any iron. None of the components in the assembly exposed to the heated injection port contain iron. Thus analytes that may break down by contact with metal in a hot injection port are not an issue with this assembly. It is generally understood that certain amines can react with metals and break down. To verify the inertness of the new fiber, a sample containing amines was extracted with the various fiber core types. The results of our evaluation indicate that the response using the fibers with metal alloy cores were similar to those with the fused silica and StableFlex cores.

Using the metal fiber as the core material also allowed us to optimize the fiber coating process. The new continuous process controls many variables. Carboxen-PDMS fibers have been particularly difficult to coat reproducibly due to many bonding variables. Table 1 shows the comparison of lots of Carboxen-PDMS fibers prepared with the old and new coating process. As Table 1 shows, the relative standard deviation of the assemblies made by the new process have less than half the variation as compared to those made by the older process.

Another significant advantage of the metal alloy is that it is an inert metal that does not contain any iron. None of the components in the assembly exposed to the heated injection port contain iron. Thus analytes that may break down by contact with metal in a hot injection port are not an issue with this assembly. It is generally understood that certain amines can react with metals and break down. To verify the inertness of the new fiber, a sample containing amines was extracted with the various fiber core types. The results of our evaluation indicate that the response using the fibers with metal alloy cores were similar to those with the fused silica and StableFlex cores.

Table 1. Improved Reproducibility of All Metal Fiber Assemblies

<table>
<thead>
<tr>
<th></th>
<th>Ethane</th>
<th>Propane</th>
<th>Butane</th>
<th>Pentane</th>
<th>Hexane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Process (n=8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. Response</td>
<td>125</td>
<td>1699</td>
<td>6462</td>
<td>12371</td>
<td>16224</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>20</td>
<td>601.1</td>
<td>1777.9</td>
<td>2045.1</td>
<td>2243.2</td>
</tr>
<tr>
<td>% RSD</td>
<td>16%</td>
<td>35%</td>
<td>28%</td>
<td>17%</td>
<td>14%</td>
</tr>
<tr>
<td>New Process (n=6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. Response</td>
<td>202</td>
<td>3375</td>
<td>11083</td>
<td>16233</td>
<td>19294</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>16.1</td>
<td>328.3</td>
<td>513.4</td>
<td>789.7</td>
<td>974.7</td>
</tr>
<tr>
<td>% RSD</td>
<td>8%</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Table 2. Relative Response of Amines on 3 Fiber Core Materials

<table>
<thead>
<tr>
<th>Fiber Core</th>
<th>Methylamine Ratio</th>
<th>% RSD</th>
<th>Dimethylamine Ratio</th>
<th>% RSD</th>
<th>Diethylamine Ratio</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>1.14</td>
<td>5.8</td>
<td>4.85</td>
<td>4.7</td>
<td>38.12</td>
<td>3.4</td>
</tr>
<tr>
<td>Fused Silica</td>
<td>1.02</td>
<td>6.6</td>
<td>4.21</td>
<td>4.4</td>
<td>38.67</td>
<td>2.9</td>
</tr>
<tr>
<td>StableFlex</td>
<td>1.04</td>
<td>6.7</td>
<td>5.43</td>
<td>6.2</td>
<td>37.49</td>
<td>3.8</td>
</tr>
</tbody>
</table>

The merging of a new fiber assembly with a metal fiber core and an improved coating process has created a superior SPME fiber assembly. Customers should not only enjoy longer assembly life, but better reproducibility between fibers.

Related Information - SPME Vials and Closures

While the new assembly can puncture 3 mm thick vial septa, we highly recommend using vial seals designed for Solid Phase Microextraction. SPME vial seals have thinner 1.5 or 1.6 mm septa and special cap designs to obtain a secure seal. Our evaluations have determined that butyl rubber vial closures can never be recommended for use with any SPME assembly with automation. For a detailed summary of the recommended vials and closures for SPME, contact Supelco Technical Service at 800-359-3041 / 814-359-3441, or email techservice@sial.com.

Did you know...?

To completely eliminate septum coring, we highly recommend the use of Merlin Microseals™ or other septum-less inlet sealing devices.
SUPELCO PRESENTATIONS AT PITTCON 2005 - Stop by Booth 4270 for more information

POSTER SESSIONS - located in the southeast corner of the convention center.

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday, Feb. 28, 2005</td>
<td>New Carbopack X Adsorbent for 24-Hour Diffusive Sampling of 1,3-Butadiene, W. Betz</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>New Portable SPME Passive Air Monitoring and Field Sampling Device, R. Shirey</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>A Tool for Selecting an Adsorbent for Thermal Desorption Applications, J. Brown</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>Fast Gas Chromatography, Guidelines and Applications, L. Sidisky</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>Reversed-Phase Retention of Glycopeptides and Detection by Mass Spectrometry, H. Brandes</td>
<td>Morning</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Pharmaceutical Metabolite Analysis Using 100% Aqueous-Compatible HPLC Stationary Phases, C. Santasania</td>
<td>Afternoon</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Decreasing the Analysis Time of Pharmaceutical Solvents with SPME, K. Stenersson</td>
<td>Afternoon</td>
</tr>
<tr>
<td>Tuesday, Mar. 1, 2005</td>
<td>Starting Points in Chromatographic Method Development: A Structure-Based Approach, D. Bell</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>Molecular Interactions Contributing to Alternative Selectivity of Polar-Embedded HPLC Stationary Phases, D. Bell</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>Designed Selectivity Enhancement, W. Campbell</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>The Development of a New Resilient SPME Fiber Assembly Containing Coated Metal Fibers, R. Shirey</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>Novel Polyethylene Glycol Coatings for LC and GC Solid Phase Microextraction, C. Linton</td>
<td>Morning</td>
</tr>
<tr>
<td>Afternoon</td>
<td>The Importance of Ion-Exchange Capacity in Mixed-Mode SPE Technology for Pharmaceutical Bioanalysis, A. Trinh</td>
<td>Afternoon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, Mar. 1, 2005 (contd.)</td>
<td>Enhanced Selectivity from Mixed-Mode SPE Technology for Pharmaceutical Bioanalysis, D. Bell</td>
<td>Afternoon</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Flash Chromatography Method Development, M. Ye</td>
<td>Afternoon</td>
</tr>
<tr>
<td>Afternoon</td>
<td>Purification of Products of Organic Synthesis Using Flash Chromatography, M. Ye</td>
<td>Afternoon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, Mar. 2, 2005</td>
<td>Analysis of Multi-Pesticide Residues in Vegetables, Food and Fruits by SPE/GC-MS, M. Ye</td>
<td>Morning</td>
</tr>
<tr>
<td>Morning</td>
<td>Apply SPE and LC-MS to Determine Acrylamide in Potato Chips, C. Aurand</td>
<td>Morning</td>
</tr>
</tbody>
</table>

ORAL SESSIONS

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, Mar. 1, 2005</td>
<td>FAME Analysis Using High Speed GC, L. Sidisky</td>
<td>8:50 AM S220C</td>
</tr>
<tr>
<td>1:30 PM S220D</td>
<td>Molecular Interactions Contributing to Aqueous Normal Phase Retention of Basic Analytes on Fluorinated and Other Polar HPLC Stationary Phases, D. Bell</td>
<td>Tuesday, Mar. 1, 2005</td>
</tr>
<tr>
<td>2:30 PM S220C</td>
<td>Zirconia: The Ideal Substrate for Ion-Exchange LC and LC-MS, R. Henry</td>
<td>Tuesday, Mar. 1, 2005</td>
</tr>
</tbody>
</table>

Patent

SPME - Technology licensed exclusively to Supelco. US patent #5,691,206; European patent #523,092.

Trademarks

Arocold • Monsanto Chemical Co.; Ascentis, Carbopack, Carbotrap, Carboxen, Carboxieve, Equity, Glass Magnet, Riedel-de Haën, Separate Source, Sigma-Aldrich, StableFlex, Supelco - Sigma-Aldrich Co., CombiPAL - CTC Analytics; Dynatherm - CDS Analytical; FOCUSLiners - SGE International Pty Ltd; Gerstel - Gerstel GmbH; Microseal - Merlin Instrument Company; PerkinElmer - PerkinElmer Corp.; PittCON - The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy; Tekmar - Tekmar Co.; Waters - Waters Associates, Inc.

Order/Customer Service 800-247-6628, 800-325-3010 (US only) • Fax 800-325-5052 (US only) • E-mail supelco@sial.com

Technical Service 800-359-3041, 814-359-3044 • Fax 800-359-3044, 814-359-5468 • E-mail techservice@sial.com

SUPELCO • 595 North Harrison Road, Bellefonte, PA 16823-0048 • 814-359-3441

© 2005 Sigma-Aldrich Co. Printed in USA. Supelco brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.