LATEST NEW PRODUCTS FOR
Organic and Medicinal Chemists

- Organometallic Complexes and Ligands
- Ionic Liquids
- SmartBlocs™
- Halogenated Aryl Derivatives
- Aryl Sulfonyl Chlorides
- Bifunctionalized Building Blocks
- Alkoxy silanes
- Aromatic Terminal Alkynes
- Solid-Phase Polymer-Bound Reagents
- Functionalized Silica Gel Scavengers

sigma-aldrich.com
Organic synthesis has evolved over the centuries from a discipline based on intuition and guesswork to a more scientific approach where scientists can more accurately determine reaction mechanisms, intermediates and final products. Developments in such areas as medicinal chemistry, molecular biology, pharmaceutical chemistry, physiology, and genetics has led for the need of more varied and multifunctional building blocks as potential leads for fighting diseases, as new catalysts, and as new synthetic pathways for molecules.

This ChemFile contains a comprehensive listing of our latest new products for organic synthesis and medicinal chemistry. For a more comprehensive list of new products available from Sigma-Aldrich, please visit us on the Web at www.sigma-aldrich.com/new.

New Products in this ChemFile Include:

- Organometallic Complexes and Ligands
- Ionic Liquids
- SmartBlocs™
- Halogenated Aryl Derivatives
- Aryl Sulfonyl Chlorides
- Bifunctionalized Building Blocks
- Alkoxyilanes
- Aromatic Terminal Alkynes
- Solid-Phase Polymer-Bound Reagents
- Alkoxysilanes
- Aromatic Terminal Alkynes
- Solid-Phase Polymer-Bound Reagents

We are committed to being your preferred supplier of building blocks for organic synthesis. Our wide range of high-quality products, superior distribution facilities, user-friendly ordering systems, and vast chemical knowledge make us the ideal source for all of your research and development needs. We welcome the opportunity to show you our capabilities.

You Are Only a Click Away...

Visit our award-winning website, www.sigma-aldrich.com for the latest information on new and existing products. In addition, you will find a wealth of technical pages, structure searching, lot-specific information and technical updates; you will also be able to request literature all at the click of your mouse. If you are interested in learning more about how you can begin to purchase your Sigma-Aldrich products through the website, please call your local Sigma-Aldrich sales office for more information.

On the Cover

3-D structure of coupling catalyst SK-CC01-A (Fluka Product Number 36037), distributed in collaboration with Solvias.

To place an order contact your local Sigma-Aldrich office (see back cover of ChemFile).
Our Latest New Organometallic Complexes and Ligands

The unique and novel properties of organometallic complexes and ligands make them potential key intermediates in a variety of organic transformations such as pharmaceuticals, polymers, medicinal chemistry, as catalysts in homogeneous and heterogeneous organic synthesis, and as new catalysts for drug discovery. We, at Sigma-Aldrich, are working hard to offer you the latest novelties of these very useful compounds.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>94732</th>
<th>500mg</th>
<th>C_{18}H_{28}Si_{2}Ti</th>
<th>MW 348.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis(trimethylsilyl)acetylene-bis(cyclopentadienyl)titanium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bis(trimethylsilyl)acetylene-bis(cyclopentadienyl)titanium</td>
<td>95257</td>
<td>500mg</td>
<td>C_{23}H_{33}Si_{2}Zr</td>
<td>MW 470.9</td>
</tr>
<tr>
<td>2’-(Dimethylamino)-2-biphenylpalladium(II) chloride</td>
<td>36037</td>
<td>250mg</td>
<td>C_{28}H_{37}Cl_{2}NPd</td>
<td>puriss, ≥99% 1g</td>
</tr>
<tr>
<td>3-Methyl-2-butenylene-bis(tricyclohexylphosphine)dichlororuthenium</td>
<td>44297</td>
<td>250mg</td>
<td>C_{41}H_{74}Cl_{2}P_{2}Ru</td>
<td>的技术，≥95% 500mg</td>
</tr>
<tr>
<td>Bis[tris(3-(heptadecafluorooctyl)phenyl)phosphine]palladium(II) dichloride</td>
<td>93521</td>
<td>100mg</td>
<td>C_{86}H_{24}Cl_{2}F_{102}P_{2}Pd</td>
<td>1g</td>
</tr>
<tr>
<td>Bis[tris(4-(1H,1H,2H,2H-perfluorodecyl)phenyl)phosphine]palladium(II) dichloride</td>
<td>95447</td>
<td>100mg</td>
<td>C_{96}H_{48}Cl_{2}F_{102}P_{2}Pd</td>
<td>500mg</td>
</tr>
<tr>
<td>Tri-2-furylphosphine</td>
<td>82163</td>
<td>250mg</td>
<td>C_{12}H_{9}O_{3}P</td>
<td>99% 1g</td>
</tr>
<tr>
<td>Tri-tert-butylphosphine</td>
<td>89984</td>
<td>1g</td>
<td>C_{12}H_{3}O_{3}P</td>
<td>99% 5g</td>
</tr>
<tr>
<td>Tricyclopentylphosphine</td>
<td>94096</td>
<td>100mg</td>
<td>C_{15}H_{27}P</td>
<td>96% 25g</td>
</tr>
<tr>
<td>Tris[3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)phenyl]phosphine</td>
<td>83934</td>
<td>1g</td>
<td>C_{48}H_{24}F_{18}P</td>
<td>95% 5g</td>
</tr>
<tr>
<td>Tris[3,3,5-bis(trifluoromethyl)phenyl]phosphine</td>
<td>74231</td>
<td>500mg</td>
<td>C_{24}H_{24}F_{18}P</td>
<td>MW 670.3</td>
</tr>
<tr>
<td>Bis[tris(3,3,5-bis(trifluoromethyl)phenyl]phosphine</td>
<td>94859</td>
<td>250mg</td>
<td>C_{24}H_{24}F_{18}P</td>
<td>MW 350.5</td>
</tr>
<tr>
<td>(R)-(+)-2-[2-(Diphenylphosphino)phenyl]-4-isopropyl-2-oxazoline</td>
<td>72575</td>
<td>500mg</td>
<td>C_{24}H_{24}F_{18}P</td>
<td>MW 373.4</td>
</tr>
<tr>
<td>(S)-(-)-2-[2-(Diphenylphosphino)phenyl]-4-isopropyl-2-oxazoline</td>
<td>91716</td>
<td>500mg</td>
<td>C_{24}H_{24}F_{18}P</td>
<td>MW 373.4</td>
</tr>
<tr>
<td>Tris[3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)phenyl]phosphine</td>
<td>84928</td>
<td>5g</td>
<td>C_{48}H_{24}F_{18}P</td>
<td>MW 1600</td>
</tr>
<tr>
<td>Tris[3,3,5-bis(trifluoromethyl)phenyl]phosphine</td>
<td>83934</td>
<td>5g</td>
<td>C_{24}H_{24}F_{18}P</td>
<td>MW 1600</td>
</tr>
</tbody>
</table>

Ligands

Complexes	94732	500mg	C_{18}H_{28}Si_{2}Ti	MW 348.5
Tri-2-furylphosphine	82163	250mg	C_{12}H_{9}O_{3}P	99% 1g
Tri-tert-butylphosphine	89984	1g	C_{12}H_{3}O_{3}P	99% 5g
Tricyclopentylphosphine	94096	100mg	C_{15}H_{27}P	96% 25g
Tris[3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)phenyl]phosphine	83934	1g	C_{48}H_{24}F_{18}P	95% 5g
Tris[3,3,5-bis(trifluoromethyl)phenyl]phosphine	74231	500mg	C_{24}H_{24}F_{18}P	MW 670.3
Bis[tris(3,3,5-bis(trifluoromethyl)phenyl]phosphine	94859	250mg	C_{24}H_{24}F_{18}P	MW 350.5
(R)-(+)-2-[2-(Diphenylphosphino)phenyl]-4-isopropyl-2-oxazoline	72575	500mg	C_{24}H_{24}F_{18}P	MW 373.4
(S)-(-)-2-[2-(Diphenylphosphino)phenyl]-4-isopropyl-2-oxazoline	91716	500mg	C_{24}H_{24}F_{18}P	MW 373.4
Tris[3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)phenyl]phosphine	84928	5g	C_{48}H_{24}F_{18}P	MW 1600
Tris[3,3,5-bis(trifluoromethyl)phenyl]phosphine	83934	5g	C_{24}H_{24}F_{18}P	MW 1600

Ready to scale up? For larger quantities, please contact your local Sigma-Aldrich office (see back cover of ChemFile) for availability.
Our Latest Developments in Ionic Liquids

Ionic liquids have received tremendous attention over the last few years, primarily because of the need for environmentally friendly reaction solvent alternatives. Ionic liquids also offer certain advantages over traditional solvents such as enhanced reaction rates, higher selectivities and higher reaction yields, as well as nonflammability, chemical and thermal stability, and no significant vapor pressure. These products also work well for a wide range of reactions including the Diels–Alder, Stille, Suzuki, and Heck reaction, as well as the Beckmann rearrangement. For an excellent review of ionic liquid applications in organic synthesis, please see Dr. Hua Zhao’s and Dr. Sanjay V. Malhotra’s recent article in the *Aldrichimica Acta*. Sigma-Aldrich is continually expanding its offerings of ionic liquids to keep pace with the accelerating developments in these types of applications. For a complete list of ionic liquids that Sigma-Aldrich offers, please visit our website at www.sigma-aldrich.com/ionicliquids.

References:

New Highly Fluorinated Ionic Liquids

Highly fluorinated hydrophobic anions are useful in performing water-immiscible separations, making them ideal for two-phase applications.

<table>
<thead>
<tr>
<th>1-Ethyl-3-methylimidazolium bis(tri-fluoromethylsulfonyl)imide [EMIM][BMeI]</th>
<th>3-Methyl-1-propylpyridinium bis(tri-fluoromethylsulfonyl)imide [PMPy][BMeI]</th>
<th>1,2-Dimethyl-3-propylimidazolium tris(trifluoromethylsulfonyl)methide [DMPIM][TMeM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11291</td>
<td>30565</td>
<td>74305</td>
</tr>
<tr>
<td>purum, ≥ 97%</td>
<td>purum, ≥ 97%</td>
<td>purum, ≥ 97%</td>
</tr>
<tr>
<td>C₉H₁₁F₆N₃O₄S₂</td>
<td>C₁₁H₁₂F₆N₂O₄S₂</td>
<td>C₁₂H₁₅F₉N₂O₆S₃</td>
</tr>
<tr>
<td>MW 391.3</td>
<td>MW 416.4</td>
<td>MW 550.4</td>
</tr>
</tbody>
</table>

1,2-Dimethyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [DMPIM][BMeI]

| 50807 |
| 1g |
| purum, ≥ 97% |
| C₁₂H₁₅F₉N₂O₆S₃ |
| MW 491.3 |

New Halogen-Free Ionic Liquids

Halogen-free ionic liquids address the problem of disposing halogenated liquids and environmental compatibility.

<table>
<thead>
<tr>
<th>1-Ethyl-3-methylimidazolium tosylate [EMIM][Ts]</th>
<th>1-Butyl-3-methylimidazolium 2-(2-methoxyethoxy)ethyl sulfate [BMIM][MEESO₄]</th>
<th>1-Butyl-3-methylimidazolium octyl sulfate [BMIM][OctSO₄]</th>
</tr>
</thead>
<tbody>
<tr>
<td>89155</td>
<td>67421</td>
<td>75059</td>
</tr>
<tr>
<td>purum, ≥ 98%</td>
<td>purum, ≥ 98%</td>
<td>purum, ≥ 98%</td>
</tr>
<tr>
<td>C₁₃H₂₁N₂O₅S</td>
<td>C₁₃H₂₀N₂O₅S</td>
<td>C₁₆H₃₂N₂O₅S</td>
</tr>
<tr>
<td>MW 282.4</td>
<td>MW 338.4</td>
<td>MW 348.5</td>
</tr>
</tbody>
</table>

To place an order contact your local Sigma-Aldrich office (see back cover of ChemFile).
New Building Blocks for Organic Synthesis and Medicinal Chemistry

SmartBlocs™ are a unique collection of products having a wide range of applications in organic synthesis and medicinal chemistry. SmartBlocs™ contain two points of reactivity and could serve as the common core for library synthesis. Below are examples of some of the newest additions of heterocyclic monomers and polyfunctional template molecules.

<table>
<thead>
<tr>
<th>Compound Description</th>
<th>Formula</th>
<th>MW</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Amino-1-(4-chlorophenyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{10}H_{8}ClN_{3}O_{2}</td>
<td>237.65</td>
<td>98.0%</td>
</tr>
<tr>
<td>5-Amino-1-(4-fluorophenyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{10}H_{8}F_{3}N_{3}O_{2}</td>
<td>221.19</td>
<td>98.0%</td>
</tr>
<tr>
<td>5-Amino-1-phenyl-1H-pyrazole-4-carboxylic acid</td>
<td>C_{10}H_{9}N_{3}O_{2}</td>
<td>203.20</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(4-Bromophenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{11}H_{6}BrF_{3}N_{2}O_{2}</td>
<td>335.08</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(4-Chlorophenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{11}H_{6}ClF_{3}N_{2}O_{2}</td>
<td>290.63</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(3-Chlorophenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{11}H_{6}ClF_{3}N_{2}O_{2}</td>
<td>290.63</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(4-Chlorophenyl)-2-oxo-3-pyrrolidinocarboxylic acid</td>
<td>C_{11}H_{10}ClNO_{3}</td>
<td>239.66</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(4-Fluorophenyl)-2-oxo-3-pyrrolidinocarboxylic acid</td>
<td>C_{11}H_{10}FNO_{3}</td>
<td>223.21</td>
<td>98.0%</td>
</tr>
<tr>
<td>5-Amino-1-(4-methylphenyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{11}H_{11}N_{3}O_{2}</td>
<td>217.23</td>
<td>98.0%</td>
</tr>
<tr>
<td>5-Amino-1-(4-methoxyphenyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{11}H_{11}N_{3}O_{3}</td>
<td>233.23</td>
<td>98.0%</td>
</tr>
<tr>
<td>5-Amino-1-(2-methoxyphenyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{11}H_{11}N_{3}O_{3}</td>
<td>233.23</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(4-Methylphenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{12}H_{9}F_{3}N_{2}O_{2}</td>
<td>270.21</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(4-Methoxyphenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{12}H_{9}F_{3}N_{2}O_{3}</td>
<td>286.21</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(2-Methoxyphenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid</td>
<td>C_{12}H_{9}F_{3}N_{2}O_{3}</td>
<td>286.21</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(4-Chlorobenzyl)-3-methyl-1H-pyrazole-5-carboxylic acid</td>
<td>C_{12}H_{11}ClN_{2}O_{2}</td>
<td>250.69</td>
<td>98.0%</td>
</tr>
<tr>
<td>1-(4-Fluorobenzyl)-3-methyl-1H-pyrazole-5-carboxylic acid</td>
<td>C_{12}H_{11}FN_{2}O_{2}</td>
<td>234.23</td>
<td>98.0%</td>
</tr>
<tr>
<td>Ethyl 5-amino-1-(4-bromophenyl)-1H-pyrazole-4-carboxylate</td>
<td>C_{12}H_{12}BrN_{2}O_{2}</td>
<td>310.15</td>
<td>98.0%</td>
</tr>
<tr>
<td>Ethyl 5-amino-1-(3-chlorophenyl)-1H-pyrazole-4-carboxylate</td>
<td>C_{12}H_{12}ClN_{2}O_{2}</td>
<td>265.70</td>
<td>98.0%</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>Reference Code</td>
<td>Quantity</td>
<td>Molecular Formula</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Ethyl 5-amino-1-(2-fluorophenyl)-1H-pyrazole-4-carboxylate</td>
<td>L25,152-6</td>
<td>250mg</td>
<td>C12H12FN3O2</td>
</tr>
<tr>
<td>1-(2-Methylphenyl)-2-oxo-3-pyrrolidinecarboxylic acid</td>
<td>L18,297-4</td>
<td>250mg</td>
<td>C12H13NO3</td>
</tr>
<tr>
<td>1-(3-Methylphenyl)-2-oxo-3-pyrrolidinecarboxylic acid</td>
<td>L18,298-2</td>
<td>250mg</td>
<td>C12H13NO3</td>
</tr>
<tr>
<td>1-(4-Methylphenyl)-2-oxo-3-pyrrolidinecarboxylic acid</td>
<td>L18,299-1</td>
<td>250mg</td>
<td>C12H13NO3</td>
</tr>
<tr>
<td>1-(2-Methoxyphenyl)-2-oxo-3-pyrrolidinecarboxylic acid</td>
<td>L18,300-3</td>
<td>250mg</td>
<td>C12H14NO4</td>
</tr>
<tr>
<td>1-(4-Methoxyphenyl)-2-oxo-3-pyrrolidinecarboxylic acid</td>
<td>L18,301-5</td>
<td>250mg</td>
<td>C12H14NO4</td>
</tr>
<tr>
<td>Ethyl 5-amino-1-(4-methoxyphenol)-1H-pyrazole-4-carboxylate</td>
<td>L25,146-1</td>
<td>250mg</td>
<td>C13H15N3O3</td>
</tr>
<tr>
<td>5-Amino-1-(4-bromophenyl)-1H-pyrazol-4-yl)(2-thienyl)methanone</td>
<td>L25,221-2</td>
<td>250mg</td>
<td>C14H10BrN3O2</td>
</tr>
<tr>
<td>2-(4-Bromophenyl)-1-(4-hydroxy-4,6-dimethoxyphenyl)ethanone</td>
<td>L25,129-1</td>
<td>250mg</td>
<td>C16H15BrO3</td>
</tr>
<tr>
<td>2-(4-Chlorophenyl)-1-(4-hydroxy-4,6-dimethoxyphenyl)ethanone</td>
<td>L25,126-7</td>
<td>250mg</td>
<td>C16H15ClO3</td>
</tr>
<tr>
<td>2-(4-Fluorophenyl)-1-(4-hydroxy-4,6-dimethoxyphenyl)ethanone</td>
<td>L25,128-3</td>
<td>250mg</td>
<td>C16H15FO4</td>
</tr>
<tr>
<td>2-(4-Chlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone</td>
<td>L25,130-5</td>
<td>250mg</td>
<td>C16H15ClO3</td>
</tr>
<tr>
<td>Ethyl 4-(2-amino-4-chloroanilino)-1-piperidinecarboxylate</td>
<td>L15,785-6</td>
<td>250mg</td>
<td>C13H12ClN3O2</td>
</tr>
<tr>
<td>2-Phenyl-1-(2,4,6-trihydroxyphenyl)ethanone</td>
<td>L25,118-6</td>
<td>250mg</td>
<td>C15H13BrO3</td>
</tr>
<tr>
<td>2-(4-Chlorophenyl)-1-(2-hydroxy-4,6-dimethoxyphenyl)ethanone</td>
<td>L25,115-1</td>
<td>250mg</td>
<td>C15H13ClO3</td>
</tr>
<tr>
<td>(5-Amino-1-phenyl-1H-pyrazol-4-yl)(2-chlorophenyl)methanone</td>
<td>L25,168-2</td>
<td>250mg</td>
<td>C16H15ClN3O2</td>
</tr>
<tr>
<td>(5-Amino-1-phenyl-1H-pyrazol-4-yl)(4-chlorophenyl)methanone</td>
<td>L25,166-6</td>
<td>250mg</td>
<td>C17H15ClN3O2</td>
</tr>
<tr>
<td>(5-Amino-1-phenyl-1H-pyrazol-4-yl)(3-methylphenyl)methanone</td>
<td>L25,170-4</td>
<td>250mg</td>
<td>C17H14ClN3O2</td>
</tr>
<tr>
<td>(5-Amino-1-phenyl-1H-pyrazol-4-yl)(4-methylphenyl)methanone</td>
<td>L25,164-2</td>
<td>250mg</td>
<td>C17H14ClN3O2</td>
</tr>
<tr>
<td>(5-Amino-1-phenyl-1H-pyrazol-4-yl)(4-methylphenyl)methanone</td>
<td>L25,166-6</td>
<td>250mg</td>
<td>C17H14ClN3O2</td>
</tr>
</tbody>
</table>

To place an order contact your local Sigma-Aldrich office (see back cover of ChemFile).
New Halogenated Building Blocks

Researchers are continually seeking new and interesting building blocks for synthesis applications. Sigma-Aldrich is adding new products monthly to meet this increasing demand. We have gathered some of our newest building blocks including halogenated aryl derivatives and aryl sulfonyl chlorides that have become increasing popular for organic synthesis.

Halogenated Aryl Derivatives— Aryl Fluorides and Iodides

Although fluorinated compounds are very rare in nature, the fact that the fluorine atom is small and strongly electronegative, and bonds very strongly to carbon, raises the possibility of interesting and useful properties displayed once inside living systems. Replacing one or two hydrogens with fluorine atoms has almost no effect on molecular volume, which is of critical importance to researchers concerned with the confined spaces of receptor molecules and enzyme active sites. The high electronegativity affects the chemistry of neighboring functional groups very strongly, and the high strength of the C–F bond effectively blocks metabolic oxidation at fluorinated sites. It is not surprising that medicinal chemists find selectively fluorinated molecules very attractive as potential anticancer, antiviral, and antibacterial agents.1

The need to create new carbon–carbon bonds is of prime importance in medicinal chemistry today. A number of metal-catalyzed coupling reactions, including the Heck, Suzuki, Stille,2 and Negishi3 couplings have successfully used aryl iodides in creating these types of bonds due to their higher reactivity over bromine and chlorine derivatives.4 Sigma-Aldrich offers a wide range of aryl fluorides and iodides to meet your research needs.

4-Chloro-2-fluoriodobenzene
- **54,118-4**
 - 97%
 - C₆H₅ClF
 - MW 256.44

3-Chloro-4-fluoriodobenzene
- **54,290-3**
 - 98%
 - C₆H₅ClF
 - MW 256.44

3-Chloro-2-fluoriodobenzene
- **55,865-6**
 - 97%
 - C₆H₅ClF
 - MW 256.44

1,2-Dichloro-4-iodobenzene
- **54,175-3**
 - 98%
 - C₆H₅Cl₂I
 - MW 272.9

2,5-Difluoriodobenzene
- **55,859-1**
 - 97%
 - C₆H₅F₂I
 - MW 239.99

3,5-Difluoriodobenzene
- **55,860-5**
 - 97%
 - C₆H₅F₂I
 - MW 239.99

2-Fluoro-5-iodobenzoic acid
- **55,245-3**
 - 97%
 - C₆H₅FIO
 - MW 284.45

2-Fluoro-5-iodobenzoic acid
- **55,243-7**
 - 97%
 - C₆H₅FIO₂
 - MW 266.01

2-(Trifluoromethoxy)iodobenzene
- **55,439-1**
 - 97%
 - C₆H₅F₃IO
 - MW 287.99

4-Chloro-2-iodobenzoic acid
- **55,243-7**
 - 97%
 - C₆H₅ClIO₂
 - MW 282.46

2-Iodobenzaldehyde
- **55,077-9**
 - 97%
 - C₇H₅IO
 - MW 232.02

2-Fluoro-6-iodobenzoyl chloride
- **55,244-5**
 - 97%
 - C₇H₅ClFIO
 - MW 284.45

2-Fluoro-5-iodobenzoyl chloride
- **55,246-1**
 - 97%
 - C₇H₅ClFIO
 - MW 284.45

3-(Trifluoromethoxy)iodobenzene
- **56,354-4**
 - 97%
 - C₆H₅F₃IO
 - MW 288.01

4-(Difluoromethoxy)iodobenzene
- **56,014-6**
 - 97%
 - C₆H₅Cl₂IO
 - MW 282.46

4-Cyano-2-iodoaniline
- **57,801-0**
 - 98%
 - C₇H₅IN₂
 - MW 244.03

2-Iodobenzaldehyde
- **55,246-1**
 - 97%
 - C₇H₅IO
 - MW 232.02

For technical assistance or to order, please call your local Sigma-Aldrich office.
To place an order contact your local Sigma-Aldrich office (see back cover of ChemFile).

Visit www.sigma-aldrich.com/newproducts for all of our newest products!

This site is regularly updated with our latest new products in the field of Analytical Science, Organic Synthesis and Life Science!
New Aryl Sulfonyl Chloride Derivatives

Aryl sulfonic chloride derivatives are frequently used in parallel synthesis to synthesize sulfonamides and sulfonate linkages.

<table>
<thead>
<tr>
<th>Compound Description</th>
<th>CAS number</th>
<th>Purity</th>
<th>Molecular Formula</th>
<th>Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Chloro-2-fluorobenzensulfonyl chloride</td>
<td>55,867-2</td>
<td>97%</td>
<td>C₆H₃Cl₂FO₂S</td>
<td>229.06</td>
</tr>
<tr>
<td>3-Chloro-4-fluorobenzensulfonyl chloride</td>
<td>56,182-7</td>
<td>97%</td>
<td>C₆H₃Cl₂FO₂S</td>
<td>229.06</td>
</tr>
<tr>
<td>2,3-Dichlorobenzensulfonyl chloride</td>
<td>54,491-7</td>
<td>97%</td>
<td>C₆H₃Cl₂O₂S</td>
<td>245.51</td>
</tr>
<tr>
<td>2,4-Dichlorobenzensulfonyl chloride</td>
<td>54,569-4</td>
<td>97%</td>
<td>C₆H₃Cl₂O₂S</td>
<td>245.51</td>
</tr>
<tr>
<td>2,6-Dichlorobenzensulfonyl chloride</td>
<td>54,570-8</td>
<td>97%</td>
<td>C₆H₃Cl₂O₂S</td>
<td>245.51</td>
</tr>
<tr>
<td>3-Chloro-2-fluorobenzensulfonyl chloride</td>
<td>55,860-0</td>
<td>97%</td>
<td>C₆H₃Cl₂FO₂S</td>
<td>229.06</td>
</tr>
<tr>
<td>3-Chloro-4-fluorobenzensulfonyl chloride</td>
<td>55,590-8</td>
<td>97%</td>
<td>C₆H₃Cl₂FO₂S</td>
<td>229.06</td>
</tr>
<tr>
<td>3,4,5-Trifluorobenzensulfonyl chloride</td>
<td>55,599-1</td>
<td>97%</td>
<td>C₆H₃ClF₃O₂S</td>
<td>230.59</td>
</tr>
<tr>
<td>3,5-Trifluorobenzensulfonyl chloride</td>
<td>54,693-3</td>
<td>97%</td>
<td>C₆H₃ClF₃O₂S</td>
<td>230.59</td>
</tr>
<tr>
<td>3-Bromobenzensulfonyl chloride</td>
<td>54,571-6</td>
<td>97%</td>
<td>C₆H₃BrClO₂S</td>
<td>255.52</td>
</tr>
<tr>
<td>4-(Trifluoromethoxy)benzenesulfonyl chloride</td>
<td>56,584-9</td>
<td>97%</td>
<td>C₆H₃ClF₂O₂S</td>
<td>244.62</td>
</tr>
<tr>
<td>2-Methoxy-4-nitrobenzenesulfonyl chloride</td>
<td>55,593-2</td>
<td>96%</td>
<td>C₆H₆ClNO₅S</td>
<td>251.64</td>
</tr>
<tr>
<td>2,4-Bis(trifluoromethoxy)benzenesulfonyl chloride</td>
<td>55,731-5</td>
<td>97%</td>
<td>C₆H₃Cl₂O₂S</td>
<td>254.71</td>
</tr>
<tr>
<td>2,5-Dimethoxybenzenesulfonyl chloride</td>
<td>55,223-2</td>
<td>98%</td>
<td>C₆H₆ClO₂S</td>
<td>236.67</td>
</tr>
<tr>
<td>4-Methylbenzenesulfonyl chloride</td>
<td>56,536-9</td>
<td>97%</td>
<td>C₁₁H₁₃ClO₂S</td>
<td>246.75</td>
</tr>
</tbody>
</table>

The Sigma-Aldrich Library of Rare Chemicals
Sigma-Aldrich...Your Chemistry Partner for Drug Discovery and Development

- Available Now!
- Entire library available as SDfiles (ISIS™/BASE ver 2.0 or later is required)
- Each SDFile contains a structure, molecular formula, molecular weight and unique catalog number
- Mac™ or PC formats

The Library of Rare Chemicals contains over 130,000 research compounds ideal for High Throughput Screening that have been acquired from thousands of academic scientists worldwide. In keeping with our motto, “Chemists Helping Chemists in Research and Industry,” we have supplied the scientific community for years with thousands of difficult-to-obtain compounds. We are continuing our commitment in providing a unique service to the researcher by adding a spectrum of small molecule compounds. By focusing on quality, reliability, and diversity of compounds in the Library, Sigma-Aldrich will continue to be the preferred supplier of compounds to the biotech, pharmaceutical, and agrochemical companies.
Our Latest Highlights in Bifunctionalized Building Blocks

Bifunctionalized building blocks offer the possibility of unique reactions and products because of their multiple reaction sites. Because of this, new reaction pathways and products for organic synthesis may be possible.

tert-Butyl Protected Building Blocks

<table>
<thead>
<tr>
<th>Compound</th>
<th>CAS Number</th>
<th>Quantity</th>
<th>Purity</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine tert-butyl ester hydrochloride</td>
<td>42604</td>
<td>1g</td>
<td>≥99%</td>
<td>181.66</td>
</tr>
<tr>
<td>Mono-tert-butyl malonate</td>
<td>73974</td>
<td>5g</td>
<td>≥95%</td>
<td>220.23</td>
</tr>
<tr>
<td>tert-Butyl 3-hydroxypropionate</td>
<td>90218</td>
<td>1g</td>
<td></td>
<td>206.24</td>
</tr>
<tr>
<td>d-Alanine tert-butyl ester hydrochloride</td>
<td>30178</td>
<td>1g</td>
<td>≥99%</td>
<td>225.7</td>
</tr>
<tr>
<td>O-tert-butyl-L-threonine methyl ester hydrochloride</td>
<td>81655</td>
<td>5g</td>
<td></td>
<td>225.7</td>
</tr>
<tr>
<td>Isocyano & Isothiocyano tert-Butyl Protected Building Blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tert-Butyl 2-isocyanopropionate</td>
<td>40803</td>
<td>250mg</td>
<td>≥97%</td>
<td>155.19</td>
</tr>
<tr>
<td>tert-Butyl 3-isocyanopropionate</td>
<td>08608</td>
<td>250mg</td>
<td>≥97%</td>
<td>155.19</td>
</tr>
<tr>
<td>tert-Butyl 2-isocyanato-3-methylbutyrate</td>
<td>18992</td>
<td>250mg</td>
<td>≥97%</td>
<td>183.25</td>
</tr>
<tr>
<td>tert-Butyl 2-isothiocyanatobenzoate</td>
<td>59813</td>
<td>1g</td>
<td>≥97%</td>
<td>235.31</td>
</tr>
<tr>
<td>Di-tert-butyl 2-isocyanosuccinate</td>
<td>51492</td>
<td>250mg</td>
<td>≥97%</td>
<td>255.31</td>
</tr>
<tr>
<td>tert-Butyl 2-isocyanato-3-phenylpropionate</td>
<td>16521</td>
<td>250mg</td>
<td>≥97%</td>
<td>231.29</td>
</tr>
</tbody>
</table>

To place an order contact your local Sigma-Aldrich office (see back cover of ChemFile).
New Alkoxysilanes for C–C Coupling Reactions

The use of silicon compounds as transmetalation reagents has attracted much attention as a viable alternative to the popular Stille and Suzuki coupling reactions mainly due to the formation of nontoxic byproducts and stability to many reaction conditions. Silicon-based coupling reactions can be carried out using aryl-, heteroaryl-, or alkenyl-halides and alkoxysilanes in the presence of palladium or rhodium catalysts. Among the various types of silicon compounds available, alkoxysilanes are more effective in coupling reactions.

Recently, considerable attention has been paid to the rhodium-catalyzed addition of aryl(trialkoxy)silanes to carbonyl compounds, such as aldehydes, α,β-unsaturated ketones and esters.

References:

<table>
<thead>
<tr>
<th>Chloromethyl(methyl)dimethoxysilane</th>
<th>Chloromethyltriisopropoxysilane</th>
<th>Triethoxy-p-tolylsilane</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SiMe2(OCH3)2]Cl</td>
<td>[Si(CH3)3Cl]</td>
<td>[Si(C6H4(CH3)2)3]</td>
</tr>
<tr>
<td>59,742-2</td>
<td>59,697-3</td>
<td>59,157-2</td>
</tr>
<tr>
<td>97%</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td>C6H11ClO2Si</td>
<td>C10H23ClOSi</td>
<td>C13H22O3Si</td>
</tr>
<tr>
<td>MW 154.67</td>
<td>MW 254.83</td>
<td>MW 254.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triethoxysilylcyclopentane</th>
<th>Phenyliethoxysilane</th>
<th>1,4-Bis(triethoxysilyl)benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Si(OCH3)2C5H8]</td>
<td>[Si(OCH3)C6H4Si(OCH3)2]</td>
<td>[Si(OCH3)C6H5Si(OCH3)2]</td>
</tr>
<tr>
<td>59,604-3</td>
<td>59,791-0</td>
<td>59,803-8</td>
</tr>
<tr>
<td>98%</td>
<td>97%</td>
<td>96%</td>
</tr>
<tr>
<td>C11H24O3Si</td>
<td>C12H13O3Si</td>
<td>C18H34O6Si2</td>
</tr>
<tr>
<td>MW 232.09</td>
<td>MW 274.82</td>
<td>MW 402.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenyltriethoxysilane</th>
<th>Triethoxy-2-thienylsilane</th>
<th>3-(Triethoxysilyl)furan</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Si(OCH3)C6H4Si(OCH3)2]</td>
<td>[Si(OCH3)C6H5Si(OCH3)2]</td>
<td>[Si(OCH3)C5H4O]</td>
</tr>
<tr>
<td>17,560-9</td>
<td>17,556-0</td>
<td>59,231-5</td>
</tr>
<tr>
<td>98%</td>
<td>97%</td>
<td>96%</td>
</tr>
<tr>
<td>C10H18O3Si</td>
<td>C10H18O3Si</td>
<td>C12H18O3Si</td>
</tr>
<tr>
<td>MW 246.4</td>
<td>MW 246.4</td>
<td>MW 230.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triethoxysilylpropoxysilane</th>
<th>Triethoxy-2-thienylsilane</th>
<th>3-(Triethoxysilyl)furan</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Si(OCH3)2C5H8]Cl</td>
<td>[Si(OCH3)C6H5Si(OCH3)2]</td>
<td>[Si(OCH3)C5H4O]</td>
</tr>
<tr>
<td>59,679-3</td>
<td>59,701-5</td>
<td>59,231-5</td>
</tr>
<tr>
<td>97%</td>
<td>97%</td>
<td>96%</td>
</tr>
<tr>
<td>C10H13ClO3Si</td>
<td>C13H22O3Si</td>
<td>C12H18O3Si</td>
</tr>
<tr>
<td>MW 254.83</td>
<td>MW 254.4</td>
<td>MW 230.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chloromethyltriisopropoxysilane</th>
<th>Triethoxy-2-thienylsilane</th>
<th>3-(Triethoxysilyl)furan</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Si(OCH3)2C5H8]Cl</td>
<td>[Si(OCH3)C6H5Si(OCH3)2]</td>
<td>[Si(OCH3)C5H4O]</td>
</tr>
<tr>
<td>59,697-3</td>
<td>59,701-5</td>
<td>59,231-5</td>
</tr>
<tr>
<td>97%</td>
<td>97%</td>
<td>96%</td>
</tr>
<tr>
<td>C10H23ClOSi</td>
<td>C13H22O3Si</td>
<td>C12H18O3Si</td>
</tr>
<tr>
<td>MW 254.83</td>
<td>MW 254.4</td>
<td>MW 230.33</td>
</tr>
</tbody>
</table>
New Aromatic Terminal Alkynes

The terminal alkyne functionality has a wide range of applications including most recently the synthesis of spiropyran substituted 2,3-dicyanopyrazines and (±)-asteriscanolide, as well as conversion to enamines using resin-bound 2° amines. Sigma-Aldrich offers a number of aromatic alkynes that can further enhance the reactivity of the alkyne group resulting in many new reactions and products for organic synthesis and medicinal chemistry.

<table>
<thead>
<tr>
<th>Alkyne</th>
<th>CAS</th>
<th>Formula</th>
<th>Purity</th>
<th>Quantity</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Ethynylthiophene</td>
<td>57,879-7</td>
<td>C₆H₄S</td>
<td>96%</td>
<td>1g</td>
<td>108.16</td>
</tr>
<tr>
<td>3-Ethynylpyridine</td>
<td>52,044-6</td>
<td>C₆H₄N</td>
<td>98%</td>
<td>1g</td>
<td>103.12</td>
</tr>
<tr>
<td>4-Bromo-1-ethynyl-2-fluorobenzene</td>
<td>51,925-1</td>
<td>C₈H₆BrF</td>
<td>96%</td>
<td>5g</td>
<td>218.01</td>
</tr>
<tr>
<td>1-Ethynyl-2,4-difluorobenzene</td>
<td>55,644-0</td>
<td>C₈H₆F₂</td>
<td>97%</td>
<td>5g</td>
<td>158.05</td>
</tr>
<tr>
<td>1-Ethynyl-3,5-difluorobenzene</td>
<td>59,017-7</td>
<td>C₈H₆F₂</td>
<td>97%</td>
<td>1g</td>
<td>158.05</td>
</tr>
<tr>
<td>3-Chloro-1-ethynylbenzene</td>
<td>63,026-8</td>
<td>C₈H₆Cl</td>
<td>97%</td>
<td>1g</td>
<td>154.59</td>
</tr>
<tr>
<td>1-Ethynyl-3-fluorobenzene</td>
<td>51,940-5</td>
<td>C₈H₆F</td>
<td>98%</td>
<td>5g</td>
<td>136.16</td>
</tr>
<tr>
<td>Phenylacetylene</td>
<td>11,770-6</td>
<td>C₈H₆</td>
<td>98%</td>
<td>25mL</td>
<td>102.14</td>
</tr>
<tr>
<td>2-Ethynyl-α,α,α-trifluorotoluene</td>
<td>52,118-3</td>
<td>C₅H₆F₃</td>
<td>97%</td>
<td>1g</td>
<td>170.14</td>
</tr>
<tr>
<td>1-Ethyl-4-ethynylbenzene</td>
<td>55,889-3</td>
<td>C₁₀H₁₀</td>
<td>98%</td>
<td>5g</td>
<td>134.20</td>
</tr>
<tr>
<td>1-Ethynyl-3,5-dimethoxybenzene</td>
<td>58,852-0</td>
<td>C₁₀H₁₀O₂</td>
<td>98%</td>
<td>5g</td>
<td>178.25</td>
</tr>
<tr>
<td>1-Butyl-4-ethynylbenzene</td>
<td>52,108-6</td>
<td>C₁₀H₁₄</td>
<td>97%</td>
<td>5g</td>
<td>156.25</td>
</tr>
<tr>
<td>4-Ethynylbiphenyl</td>
<td>52,117-5</td>
<td>C₁₄H₁₀</td>
<td>97%</td>
<td>5g</td>
<td>202.24</td>
</tr>
<tr>
<td>1-Ethynlnaphthalene</td>
<td>55,792-7</td>
<td>C₁₄H₁₀</td>
<td>97%</td>
<td>5g</td>
<td>202.24</td>
</tr>
<tr>
<td>9-Ethynylphenanthrene</td>
<td>52,116-7</td>
<td>C₁₆H₁₀</td>
<td>97%</td>
<td>1g</td>
<td>214.22</td>
</tr>
</tbody>
</table>
Solid-Phase Polymer-Bound Reagents

The current interest in parallel synthesis for the creation of small-molecule libraries has led to a greater interest in polymer-supported reagents for solution- and solid-phase synthesis.\(^1\) The ease of workup, purification, and isolation of final product from reaction impurities makes these reagents especially well suited for these applications.

Below are some of our latest polymer-bound products that we know you will find useful.

Solid-Phase Polymer-Bound Reagents

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Formula</th>
<th>DVB (%)</th>
<th>Mesh</th>
<th>MMol/g</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-tert-Butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine, polymer bound (BEMP resin)</td>
<td>53,649-0</td>
<td>53% DVB, 100–200 mesh</td>
<td>2.0–2.5 mmol/g</td>
<td>1g</td>
<td>5g</td>
</tr>
<tr>
<td>Diisopropylamine, polymer bound (PS-DIEA)</td>
<td>53,846-9</td>
<td>53% DVB, 50–90 mesh</td>
<td>3.0–4.0 mmol N/g</td>
<td>5g</td>
<td>25g</td>
</tr>
<tr>
<td>Diisopropylamine, polymer bound (PS-DIEA)</td>
<td>53,873-6</td>
<td>53% DVB, 100–200 mesh</td>
<td>2.0–3.5 mmol N/g</td>
<td>5g</td>
<td>25g</td>
</tr>
<tr>
<td>Dimethylaminopyridine, polymer bound (PS-DMAP)</td>
<td>35,988-2</td>
<td>53% DVB, 2.5 mmol “DMAP”/g</td>
<td>2.0–3.5 mmol N/g</td>
<td>1g</td>
<td>5g</td>
</tr>
<tr>
<td>2,6-Di-tert-butylpyridine, polymer bound</td>
<td>37,782-1</td>
<td>53% DVB, 200–400 mesh, ca. 1.8 mmol/g</td>
<td>1g</td>
<td>5g</td>
<td>25g</td>
</tr>
<tr>
<td>1,3,4,6,7,8-Hexahydro-2H-pyrimido[1,2-a]pyrimidine, polymer bound (TBD, polymer bound)</td>
<td>35,875-4</td>
<td>53% DVB, ca. 2.6 mmol/g</td>
<td>ca. 7.8 mmol N/g</td>
<td>1g</td>
<td>5g</td>
</tr>
<tr>
<td>Tetraalkylammonium carbonate, polymer bound, macroporous (MP-Carbonate)</td>
<td>54,028-5</td>
<td>53% DVB, 2.5–3.5 mmol N/g</td>
<td>ca. 7.8 mmol N/g</td>
<td>5g</td>
<td>25g</td>
</tr>
<tr>
<td>Borohydride, polymer supported</td>
<td>35,994-7</td>
<td>53% DVB, 20–50 mesh, 2.0–5.0 mmol BH(_4^-/g)</td>
<td>10g</td>
<td>50g</td>
<td>100g</td>
</tr>
<tr>
<td>Cyanoborohydride, polymer supported</td>
<td>52,630-4</td>
<td>53% DVB, 18–50 mesh, 2.0–3.0 mmol/g</td>
<td>5g</td>
<td>25g</td>
<td></td>
</tr>
<tr>
<td>N-Benzyl-N’-cyclohexylcarbodiimide, polymer bound</td>
<td>56,184-3</td>
<td>53% DVB, 100–200 mesh, 1.3 mmol/g</td>
<td>5g</td>
<td>25g</td>
<td></td>
</tr>
<tr>
<td>1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide, polymer bound (EDC, polymer bound)</td>
<td>42,433-1</td>
<td>53% DVB, 200–400 mesh, ca. 0.9 mmol N/g</td>
<td>5g</td>
<td>25g</td>
<td></td>
</tr>
</tbody>
</table>

Supporting References:

Ready to scale up? For larger quantities, please contact your local Sigma-Aldrich office (see back cover of ChemFile) for availability.
Supported Oxidizing Reagents

<table>
<thead>
<tr>
<th>Perrutenate, polymer-bound, polystyrene cross-linked with 1% DVB</th>
<th>2,2,6,6-Tetramethylpiperidine N-oxyl, polymer-bound, polystyrene cross-linked with 1% DVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>83715</td>
<td>72601</td>
</tr>
<tr>
<td>capacity: ~0.3 mmol/g</td>
<td>(TEMPO-4-oxymethyl)polystyrene) capacity: ~2.5 mmol/g</td>
</tr>
<tr>
<td>particle size: 20–50 mesh</td>
<td>particle size: 200–400 mesh</td>
</tr>
<tr>
<td>2.5g</td>
<td>5g</td>
</tr>
<tr>
<td>10g</td>
<td>25g</td>
</tr>
</tbody>
</table>

Other Supported Reagents

<table>
<thead>
<tr>
<th>Methylthiourea, polymer-bound, polystyrene cross-linked with 2% DVB</th>
<th>Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, polymer-bound, polystyrene cross-linked with 1% DVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>84094</td>
<td>91501</td>
</tr>
<tr>
<td>capacity: ~2.0 mmol/g</td>
<td>(Grubbs catalyst on polystyrene) capacity: ~0.1 mmol/g</td>
</tr>
<tr>
<td>particle size: 200–400 mesh</td>
<td>particle size: 100–200 mesh</td>
</tr>
<tr>
<td>5g</td>
<td>1g</td>
</tr>
</tbody>
</table>

Professor Suzuki’s Contributions

Professor Suzuki’s contributions to organoborane chemistry involve the discovery and development of new synthetic methodologies using organoborane compounds. The formation of organic radicals from organoboranes in the presence of catalytic amounts of oxygen was first discovered in the course of cooperative work with Professor Brown’s research group. Professor Suzuki was also instrumental in the utilization of organoborane compounds as carbanions in synthesis. Organoboranes are also useful as a source of carbocations under electrochemical conditions, although a limited number of examples have been reported. More recent work by Suzuki and coworkers revolves around palladium-catalyzed cross-coupling reactions of various organoborane compounds with a number of organic electrophiles in the presence of bases. This reaction has become known as the Suzuki Coupling and is the focus of this book.

Also Available:

Organic Syntheses via Boranes Vol. 1
Herbert C. Brown
Z40,094-7

Organic Syntheses via Boranes Vol. 2: Recent Developments
Herbert C. Brown, Marek Zaidlewicz
Z40,095-5

Organic Syntheses via Boranes Vol. 3: Suzuki Coupling
Akira Suzuki & Herbert C. Brown
Z51,430-6

To order contact your local Sigma-Aldrich office or call 1-800-558-9160 (US) or visit our website at sigma-aldrich.com.

To place an order contact your local Sigma-Aldrich office (see back cover of ChemFile).
Functionalized Silica Gel Scavengers

Sigma-Aldrich Corporation and SiliCycle Inc. have collaborated to offer scientists ultra pure functionalized silica gels for medicinal and parallel chemistry. These silica gels offer several advantages over traditional polystyrene based products:

- Broad solvent compatibility, including polar solvents
- Minimal swelling, which facilitates the use in automated flow-through systems
- Ease of handling, since they develop no static charge; this simplifies filling cartridges and columns
- Thermal stability, which allows their use in microwave-assisted reactions

Highlighted below are the functionalized silica gels that can be utilized as scavengers in organic synthesis. For a complete listing of all of SiliCycle's products offered by Sigma-Aldrich, please email bseitz@sial.com.

3-Aminopropyl-functionalized silica gel

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>36,425-8</td>
<td>10g</td>
</tr>
<tr>
<td></td>
<td>50g</td>
</tr>
<tr>
<td></td>
<td>250g</td>
</tr>
</tbody>
</table>

Reacts with:

- Acids, acid chlorides, anhydrides, aldehydes, isocyanates, and chloroformates

3-(Diethylenetriamino)propyl-functionalized silica gel

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,792-6</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td>25g</td>
</tr>
<tr>
<td></td>
<td>100g</td>
</tr>
</tbody>
</table>

Reacts with:

- Acids, acid chlorides, anhydrides, aldehydes, isocyanates, and chloroformates

3-(Dimethylamino)propyl-functionalized silica gel

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,804-3</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td>25g</td>
</tr>
<tr>
<td></td>
<td>100g</td>
</tr>
</tbody>
</table>

Reacts with:

- Acids

3-(Isocyanato)propyl-functionalized silica gel

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,778-0</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td>25g</td>
</tr>
<tr>
<td></td>
<td>100g</td>
</tr>
</tbody>
</table>

Reacts with:

- Amines (primary and secondary), anilines, and hydrazines

3-(Thiocyanato)propyl-functionalized silica gel

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,794-2</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td>25g</td>
</tr>
<tr>
<td></td>
<td>100g</td>
</tr>
</tbody>
</table>

Reacts with:

- Amines (primary and secondary), anilines, and hydrazines

4-Ethylbenzenesulfonylchloride-functionalized silica gel

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,797-7</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td>25g</td>
</tr>
<tr>
<td></td>
<td>100g</td>
</tr>
</tbody>
</table>

Reacts with:

- Alcohols, amines, and other nucleophiles

4-Ethylbenzenesulfonylchloride-functionalized silica gel

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,807-8</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td>25g</td>
</tr>
<tr>
<td></td>
<td>100g</td>
</tr>
</tbody>
</table>

Reacts with:

- Amines and other nucleophiles

4-Ethylbenzenesulfonylchloride-functionalized silica gel

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>53,807-8</td>
<td>5g</td>
</tr>
<tr>
<td></td>
<td>25g</td>
</tr>
<tr>
<td></td>
<td>100g</td>
</tr>
</tbody>
</table>

Reacts with:

- Fmoc and Bsmoc protecting groups

Ready to scale up? For larger quantities, please contact your local Sigma-Aldrich office (see back cover of ChemFile) for availability.
Sigma-Aldrich Worldwide Locations

Argentina
SIGMA-ALDRICH DE ARGENTINA, S.A.
Tel: 54 11 4556 1472
Fax: 54 11 4552 1698

Australia
SIGMA-ALDRICH PTY., LIMITED
Free Tel: 1-800 800 097
Free Fax: 1-800 800 096
Tel: (612) 9841 0555
Fax: (612) 9841 0500

Austria
SIGMA-ALDRICH HANDELS GmbH
Tel: 43 1 605 8110
Fax: 43 1 605 8120

Belgium
SIGMA-ALDRICH NV/SA.
Tel: 32 2 663 75 75
Fax: 32 2 663 75 64

Canada
SIGMA-ALDRICH CANADA LTD.
Tel: 800-325-3010
Fax: 800-325-5052

China
SIGMA-ALDRICH CHINA INC.
Tel: 86-21-6386-2766
Fax: 86-21-6386-3966

Czech Republic
SIGMA-ALDRICH spol. s.r.o.
Tel: 420 22 505 23 20
Fax: 420 22 505 23 21

Denmark
SIGMA-ALDRICH DENMARK A/S
Tel: 45 3819 1919
Fax: 45 3819 1918

Finland
SIGMA-ALDRICH FINLAND
Tel: (358) 906 879 229
Fax: (358) 906 879 228

France
SIGMA-ALDRICH CHIMIE S.à.r.l.
Tel Numéro Vert: 0800 21 14 08
Fax Numéro Vert: 0800 03 10 52

Germany
SIGMA-ALDRICH CHEMIE GmbH
Tel: 0800 51 50 000
Fax: 0800 64 90 000

Greece
SIGMA-ALDRICH (O.M.) LTD
Tel: 210 9948010
Fax: 210 994831

Hungary
SIGMA-ALDRICH Kft
Tel: (06-1) 235-9054
Fax: (06-1) 235-9050

India
SIGMA-ALDRICH FOREIGN HOLDING COMPANY
Telephone
Bangalore: (080) 852 4222 / 852 4150
Hyderabad: (040) 631 5488
Mumbai: (022) 2579 7588 / 2570 2364
New Delhi: (011) 616 5477 / 6195360
Fax
Bangalore: (080) 852 4214
Hyderabad: (040) 631 5468
Mumbai: (022) 2579 7589
New Delhi: (011) 616 5611

Ireland
SIGMA-ALDRICH IRELAND LTD
Tel: 1800-200-888
Fax: 1800-600-222
Tel: (01) 4041900
Fax: (01) 4041910

Israel
SIGMA-ALDRICH ISRAEL LTD.
Tel: 1-800-70-2222
Fax: 08-948-4100
Fax: 08-948-4200

Italy
SIGMA-ALDRICH S.r.l.
Telefono: 02 33417310
Fax: 02 38010737
Numero Verde: 800-827018

Japan
SIGMA-ALDRICH JAPAN K.K.
Tokyo Tel: 03 5821 3111
Tokyo Fax: 03 5821 3170

Korea
SIGMA-ALDRICH KOREA
Tel: 031-329-9000
Fax: 031-329-9090

Malaysia
SIGMA-ALDRICH (M) SDN. BHD.
Tel: 603-56353321
Fax: 603-56354116

Mexico
SIGMA-ALDRICH QUÍMICA, S.A. de C.V.
Tel: (52) 55 11 4552 1698
Fax: 05 11 4556 1478

New Zealand
SIGMA-ALDRICH PTY., LIMITED
Tel: 0800 200 7147
Fax: 0800 325 5052

Norway
SIGMA-ALDRICH NORWAY AS
Tel: 3176000
Fax: 3176010

Poland
SIGMA-ALDRICH SP. Z O.O.
Tel: (01) 4041900
Fax: (01) 4041910

Portugal
SIGMA-ALDRICH QUÍMICA, S.A.
Tel: 0800 20 21 80
Fax: 0800 20 21 78

Russia
SIGMA-ALDRICH RUSSIA
TechCare Systems, Inc.
Tel: 709-975-1917/3231
Fax: 709-975-4792

Singapore
SIGMA-ALDRICH PTE. LTD.
Tel: 65-6271 1089
Fax: 65-6271 1571

South Africa
SIGMA-ALDRICH
SOUTH AFRICA (PTY) LTD.
Tel: 27 11 979 1188
Fax: 27 11 979 1119

Spain
SIGMA-ALDRICH QUÍMICA S.A.
Tel: 900-101376
Fax: 900-102028

Sweden
SIGMA-ALDRICH SWEDEN AB
Tel: 020-350510
Fax: 020-352522
Outside Sweden Tel: 08-7424200
Outside Sweden Fax: 08-7424243

Switzerland
FLUKA CHEMIE GmbH
Swiss Free Call: 0800 80 00 80
Tel: +41 81 755 28 28
Fax: +41 81 755 28 15

United Kingdom
SIGMA-ALDRICH COMPANY LTD.
Tel: 0800 717181
Fax: 0800 378785
Tel: 01747 833000
Fax: 01747 833143

United States
SIGMA-ALDRICH
P.O. Box 14508
St. Louis, Missouri 63178
P.O. Box 14508
St. Louis, Missouri 63178
Toll-free: 800-325-3010
Call Collect: 314-771-5750
Toll-Free Fax: 800-325-5052
Toll-Free: 314-771-5750
Fax Gratis: 314-771-5757
All other calls: 314-771-5765
Internet: sigma-aldrich.com

Fluka Chemie GmbH
CH-9471 Buchs/Switzerland
Swiss Freecall 0800 80 00 80
Fax +41-81-756 54 49
Tel: +41-81-755-25-11
E-mail: fluka@sial.com
http://www.sigma-aldrich.com

Order/Customer Service 1-800-325-3010 • Fax 1-800-325-5052
Technical Service 1-800-325-5832 • sigma-aldrich.com/techservice

Development/Bulk Manufacturing Inquiries Sigma-Aldrich Fine Chemicals 1-800-336-9719

We are committed to the success of our Customers, Employees and Shareholders through leadership in Life Science, High Technology and Service.

The SIGMA-ALDRICH Family

Sigma-Aldrich Biotechnology LP. Riedel-de Haen®: trademark under license from Riedel-de Haen GmbH.