siRNA

Predesigned siRNA

 

   

 

 


MISSION® Predesigned siRNA were created using the proprietary Rosetta Inpharmatics siRNA Design algorithm in an exclusive partnership with Merck & Co. The Rosetta siRNA Design Algorithm utilizes Position-Specific Scoring Matrices and knowledge of the seed region to predict the most specific and effective sequences for your target genes. The algorithm’s rules were developed utilizing empirical data collected from gene silencing experiments carried out over three years.


 Product Benefits

  • Best-in-class, guaranteed gene silencing
  • Efficient knockdown of low abundance messages
  • Simplified transfection optimization with 11 Positive Control siRNA
  • Distinguish sequence-specific silencing from non–specific effects with 8 negative control siRNA
  • Hundreds of functionally-validated predesigned siRNA

 Product Features

  • Species: Human, Mouse & Rat
  • Quantities: 2 (10 nmol), 5 (25 nmol) & 10 (50 nmol) OD
  • Purification: Desalt or HPLC
  • Sequence Form: 21mer duplexes with dTdT overhangs
  • Modifications: None (natural RNA bases only)
  • Quality Control: 100% mass spectrometry*
  • Format: Supplied dry in tubes

*Depending on manufacturing site, PAGE may be used to assess siRNA duplexes.


 Product Pools

A popular pooled format is 4 duplexes at 5 nmol each combined into one tube (20 nmol pooled)) plus the exact same 4 duplexes also at 5 nmol each in separate tubes (another 20 nmol individual). However, our sophisticated liquid handlers allow for a wide range of other possibilities. For feasibility review of your specific needs, please send a request to sirnarequest@sial.com.


 Validated siRNA

Many common gene targets have been validated for ≥75% mRNA knockdown (see Figure 1 for example data and the table for a list of commonly-ordered, validated siRNA by gene symbol). Validated siRNA are suitable for transfection optimization and as positive controls.

 

Knockdown Graph

Figure 1. HeLa cells transfected with predesigned siRNA at a concentration of 30 nM. The percentage remaining gene expression levels were measured via qPCR 48 hours after transfection (relative to mock). Data represents the mean of four biological replicates.

 

Validated siRNA by Gene Symbol
ABCC1 CDC7 DYRK1A IGFBP4 MLH1 PIK3R4 PRPS1 SIK2
ACP1 CDC73 DYRK1B IL6ST MSH2 PIM2 PRSS23 SLC16A1
ACP2 CDK1 EEF2K ILK MST4 PIN1 PSEN1 SLC25A17
ACVR1 CDK11B EIF2AK4 IMPA2 MTA2 PINK1 PSEN2 SLC2A1
ACVR1B CDK17 EIF4A3 INPPL1 MTM1 PIP4K2B PSMA7 SLC30A1
ADAM10 CDK2 EMR2 IP6K1 MTMR1 PIP5K1A PSMB4 SLK
ADAM12 CDK4 ENPP1 IP6K2 MTMR2 PKN2 PSMB5 SMU1
ADAM15 CDK5 EPHA5 IPMK MTMR3 PLAUR PSMB6 SNRK
ADIPOR1 CDK6 EPHB4 IRAK1 MTMR6 PLK1 PSPH SORT1
ADIPOR2 CDK7 F3 IRAK4 MTOR PLK4 PTK2 SRC
ADRBK1 CDK8 FADD ITPK1 NADK POLK PTP4A1 SRPK1
AKT1 CDK9 FDFT1 JAK1 NCSTN PPAP2C PTPLA ST7
AKT2 CDKL5 FER JUND NDRG1 PPAT PTPN1 STAT3
ALPL CDKN1B FMNL1 JUP NEDD8 PPM1D PTPN11 STK16
APP CDKN3 FURIN LANCL1 NEK2 PPME1 PTPN12 STK24
ARAF CELSR1 FYN LATS1 NEK6 PPP1CA PTPN14 STK3
ARHGDIA CERK FZD4 LDHA NEK7 PPP1CB PTPN23 STYX
ATF1 CHEK1 FZD5 LEPR NEK9 PPP1CC PTPN9 TAOK1
ATM CHUK FZD6 LGALS3 NET1 PPP1R11 PTPRE TAOK3
ATP6V0C CKS2 GLTSCR2 LIMK2 NF1 PPP1R12A PTPRF TBK1
ATR CLPP GPRC5A LRP5 NLN PPP1R2 PTPRJ TEK
AURKB CPE GRB2 LRP6 NME1 PPP1R3C PTPRK TESK1
AXIN1 CPT1A GRK6 LTBR NME1-NME2 PPP1R7 PTPRS TFRC
AXL CRKL GRN LYN NME2 PPP2CA RAB22A TGFBR1
BACE1 CSK GSK3B MAD2L1 NOTCH2 PPP2CB RAF1 TGM1
BACE2 CSNK2A1 HADHB MANF NPR1 PPP2R1A RAP1B TGM2
BAD CTNNB1 HBEGF MAP2K2 NR1H2 PPP2R2A RARG THRA
BAG1 CTSA HCG 1757335 MAP2K5 NR1H3 PPP2R5A RB1 TK1
BCAT1 CXCR4 HDAC1 MAP3K3 NR2C2 PPP2R5D RELA TKT
BIRC5 CXCR7 HDAC2 MAP3K4 NR2F2 PPP2R5E RHOA TLR4
BMP6 CYLD HECTD1 MAPK14 NUP85 PPP3CC RIOK3 TM4SF1
BMPR1A DAD1 HIPK2 MAPK3 OCRL PPP5C RIPK1 TNFRSF10B
BRAF DAPK3 HIPK3 MAPK6 OXSR1 PPP6C RIPK2 TRIM28
BUB1 DCN HPRT1 MAPK8 PAK2 PREPL RNF10 TWF1
BUB1B DDR1 HSPA1A MAPK9 PASK PRKACA RNF5 TYRO3
CASK DGKA HSPA1B MAPKAPK5 PBK PRKACB ROCK1 VEGFC
CCL2 DMBT1 HSPB8 MARK3 PCNA PRKAG1 ROCK2 VIPR1
CCNA2 DNMT1 HTRA1 MASTL PCSK9 PRKAR1A ROR2 VRK2
CCNC DUSP10 HUNK MBTPS1 PDE8A PRKAR2A RPS6KA3 WNK1
CCND1 DUSP11 ICAM1 MELK PDGFRB PRKCA RPS6KA4 YES1
CCT2 DUSP12 ICK MET PDK1 PRKCI RPS6KB1 ZMPSTE24
CD63 DVL2 IGF1R MIF PGK1 PRKCZ RYK  
CD82 DVL3 IGF2R MINPP1 PHPT1 PRKDC SHC1  


 Select Citations

  • Yang X, Sierant M, Janicka M, Peczek L, Martinez C, Hassell T, Li N, Li X, Wang T, & Nawrot B (2012). Gene silencing activity of siRNA molecules containing phosphorodithioate substitutions. ACS Chem Biol, 7, 1214-20.
  • Salma J & McDermott JC (2012). Suppression of a MEF2-KLF6 Survival Pathway by PKA Signaling Promotes Apoptosis in Embryonic Hippocampal Neurons. J Neurosci, 8, 2790-803.
  • Gilot D, Le Meur N, Giudicelli F, Le Vee M, Lagadic-Gossmann D, Theret N, & Fardel O (2011). RNAi-based screening identifies kinases interfering with dioxin-mediated up-regulation of CYP1A1 activity. PLoS ONE, 6(3), e18261, 1-10.
  • Raab M, Kappel S, Krämer A, Sanhaji M, Matthess Y, Kurunci-Csacsko E, Calzada-Wack J, Rathkolb B, Rozman J, Adler T, Busch DH, Esposito I, Fuchs H, Gailus-Durner V, Klingenspor M, Wolf E, Sänger N, Prinz F, Angelis MH, Seibler J, Yuan J, Bergmann M, Knecht R, Kreft B, & Strebhardt K (2011). Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. Nat Commun, 2:395.
  • Chia KM, Liu J, Francis GD, & Naderi A (2011). A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia, 13, 154-66.
  • Ramachandran V, Arumugam T, Langley R, Hwang RF, Vivas-Mejia P, Sood AK, Lopez-Berestein G, & Logsdon CD (2009). The ADMR receptor mediates the effects of adrenomedullin on pancreatic cancer cells and on cells of the tumor microenvironment. PLoS One, 4(10), e7502.
  • Santra MK, Wajapeyee N, & Green MR (2009). F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature, 459, 722-5.
  • Meng W, Mushika Y, Ichii T, & Takeichi M (2008). Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell, 135, 948-59.
  • Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Meguro H, Aburatani H, Nishimura R, & Yoneda T (2008). BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem, 283, 29119-25.
  • Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferre M, Strulovici B, Hazuda DJ, & Espeseth AS (2008). Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe, 4, 495-504.
  • Espeseth AS, Huang Q, Gates A, Xu M, Yu Y, Simon AJ, Shi XP, Zhang X, Hodor P, Stone DJ, Burchard J, Cavet G, Bartz S, Linsley P, Ray WJ, & Hazuda D (2006). Genome wide analysis of ubiquitin ligases in APP processing identifies a novel regulator of BACE1 mRNA levels. Mol Cell Neurosci, 33, 227–35.
  • Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, Warrener P, Jackson AL, Carleton M, Oatley M, Locco L, Santini F, Smith T, Kunapuli P, Ferrer M, Strulovici B, Friend SH, & Linsley PS (2006). Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol, 26, 9377–86.
  • Majercak J, Ray WJ, Espeseth A, Simon A, Shi XP, Wolffe C, Getty K, Marine S, Stec E, Ferrer M, Strulovici B, Bartz S, Gates A, Xu M, Huang Q, Ma L, Shughrue P, Burchard J, Colussi D, Pietrak B, Kahana J, Beher D, Rosahl T, Shearman M, Hazuda D, Sachs AB, Koblan KS, Seabrook GR, & Stone DJ (2006). LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer’s disease. Proc Natl Acad Sci, 103, 17967–72.

If additional help is needed, please consult our technical services group at oligotechserv@sial.com.

MISSION is a trademark of Merck KGaA, Darmstadt, Germany and/or its affiliates. Label License.