Biofiles 4.7


  1. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Hanahan, D., and Folkman, J., Cell, 86, 353-64 (1996).
  2. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization (Review). Fukumura, D. and Jain, R.K., Microvasc. Res., 74, 72-84 (2007).
  3. Inhibiting hypoxia-inducible factor 1 for cancer therapy (Review). Melillo, G., Mol. Cancer Res., 4, 601-5 (2006).
  4. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis (Review). Kaur, B., et al., Neuro. Oncol., 7, 134-53 (2005).
  5. Novel agents on the horizon for cancer therapy (Review). Ma, W.W. and Adjei, A.A., CA Cancer, 59, 111-137 (2009).
  6. Targeting tumor angiogenesis with histone deacetylase inhibitors (Review).
    Ellis, L., et al., Cancer Lett., 280, 145-53 (2009).
  7. Role of hypoxia-inducible factor-1α as a cancer therapy target (Review). Patiar, S., and Harris, A.L., Endocr. Relat. Cancer, 13, S61-75 (2006).
  8. Hypoxia signalling through mTOR and the unfolded protein response in cancer (Review). Wouters, B.G. and Koritzinsky, M., Nat. Rev. Cancer, 8, 851-864 (2008).
  9. Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. Land, S.C. and Tee, A.R., J. Biol. Chem., 282, 20534-43 (2007).
  10. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. Gerber, H.P., et al., J. Biol. Chem., 273, 13313-6 (1998).
  11. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Relf, M., et al., Cancer Res., 57, 963-9 (1997).
  12. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy (Review). Jain, R.K., Science, 307, 58-62 (2005).
  13. Inhibitors of vascular endothelial growth factor in cancer (Review).
    Pourgholami, M.H. and Morris, D.L., Cardiovasc. Hematol. Agents Med. Chem., 6, 343-347 (2008).
  14. A microRNA component of the hypoxic response (Review). Kulshreshtha, R., et al., Cell Death Differ., 15, 667-671 (2008).
  15. Co-evolution of tumor cells and their microenvironment (Review). Polyak, K., et al., Trends Genet., 25, 30-38 (2009).
  16. Drug resistance and the solid tumor microenvironment (Review). Trédan, O., et al., J. Natl. Cancer Inst., 99, 1441-1454 (2008).
  17. Role of the microenvironment in tumor growth and in refractoriness/ resistance to anti-angiogenic therapies (Review). Shojaei, F. and Ferrara, N., Drug Resist. Updat., 11, 219-30 (2008).
  18. Microenvironmental regulation of cancer development (Review). Hu, M. and Polyak, K., Curr. Opin. Genet. Dev., 18, 27-34 (2008).
  19. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Olive, K.P., et al., Science, 324, 1457-1461 (2009).
  20. Tumor-microenvironment interactions: dangerous liaisons (Review). Witz, I.P., Adv. Cancer Res., 100, 203-229 (2008).
  21. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Orimo, A., et al., Cell, 121, 335-348 (2005).
  22. Cancer and the tumor microenvironment: a review of an essential relationship (Review). Mbeunkui, F. and Johann, D.J. Jr., Cancer Chemother. Pharmacol., 63, 571-582 (2009).
  23. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. Devy, L., et al., FASEB J., 16, 147-54 (2002).
  24. Tumor-vascular interactions and tumor dormancy (Review). Naumov, G.N., et al., APMIS, 116, 569-585 (2008).
  25. Cisplatin and doxorubicin repress vascular endothelial growth factor expression and differentially down-regulate hypoxia-inducible factor I activity in human ovarian cancer cells. Duyndam, M.C., et al., Biochem. Pharmacol., 74, 191-201 (2007).
  26. Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin.. Satchi-Fainaro, R., et al., Cancer Cell, 7, 251-61 (2005).
  27. Roxithromycin inhibits angiogenesis of human hepatoma cells in vivo by suppressing VEGF production. Aoki, D., et al., Anticancer Res., 25, 133-8 (2005).
  28. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxiainducible factor-1α → hypoxia response element → VEGF cascade differentially regulates vascular response and growth rate in tumors. Tsuzuki, Y., et al., Cancer Res., 60, 6248-52 (2000).
  29. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function. Escuin, D., et al., Cancer Res., 65, 9021-8 (2005).
  30. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Mabjeesh, N.J., et al., Cancer Cell, 3, 363-75 (2003).
  31. Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Pourgholami, M.H., et al., Clin. Cancer Res., 12, 1928-35 (2006).
  32. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Izumi, Y., et al., Nature, 416, 279-80 (2002).
  33. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Lee, C.G., et al., Cancer Res., 60, 5565-70 (2000).
  34. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Kozin, S.V., et al., Cancer Res., 61, 39-44 (2001).
  35. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Winkler, F., et al., Cancer Cell., 6, 553-63 (2004).
  36. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Paez-Ribes, M., et al., Cancer Cell, 15, 220-31 (2009).
  37. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Ebos, J.M., et al., Cancer Cell, 15, 232-9 (2009).
  38. Distinct epigenetic changes in the stromal cells of breast cancers. Hu, M., et al., Nat. Genet., 37, 899-905 (2005).
  39. Identification of epigenetically silenced genes in tumor endothelial cells. Debby, M.E.I., et al., Cancer Res., 67, 4138-48 (2007).
  40. Combination strategy targeting the hypoxia inducible factor-1α with mammalian target of rapamycin and histone deacetylase inhibitors. Verheul, H.M., et al., Clin. Cancer Res., 14, 3589-97 (2008).
  41. Modulation of angiogenesis for cancer prevention: strategies based on antioxidants and copper deficiency (Review). Kahn, G.N. and Merajver, S.D., Curr. Pharm. Des., 13, 3584-3590 (2007).
  42. Role of prostaglandin E1 and copper in angiogenesis. Ziche, M., et al., J. Natl. Cancer Inst., 69, 475-82 (1982).
  43. Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NF-κB signaling cascade. Pan, Q., et al., Mol. Cancer Res., 1, 701-6 (2003).
  44. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Boehm, T., et al., Nature, 390, 404-7 (1997).
  45. Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Liu, J.J., et al., Int. J. Cancer, 106, 559 (2003).
  46. Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: microarray gene expression analyses. Pfeffer, U., et al., Mutat. Res., 591, 198-211 (2005).
  47. Tumor inflammatory angiogenesis and its chemoprevention (Review). Albini, A., et al., Cancer Res., 65, 10637-41 (2005).
  48. Novel function of ascorbic acid as an angiostatic factor. Ashino, H., et al., Angiogenesis, 6, 259-69 (2003).
  49. Anti-angiogenic activity of a novel class of chemopreventive compounds: oleanic acid terpenoids (Review). Sogno, I., et al., Recent Results Cancer Res., 181, 209-212 (2009).