Bovine Serum Albumin (BSA)

What is BSA and what is the molecular weight of BSA?

Albumins bind, sequester and stabilize a range of important molecules and proteins. Bovine serum albumin (BSA) is a small (~66 kDa) globular albumin protein that has been utilized in many well-cited applications. Our BSA products have been used and published in peer-reviewed articles for many applications, including cell culture, IHC, ELISA and many more. We offer a wide variety of BSA products for your research and manufacturing needs

Bovine serum albumin by purification method and application

The table below shows common applications and peer-reviewed articles that use our most popular BSA products. The list is not intended to be comprehensive and product numbers not listed may be suitable and specifically tested for various uses. Select the BSA best suited for your needs by reviewing what other researchers just like you are using.
 

Purification Methods and Application References for Bovine Serum Albumin

Product Purification Method Application References
A2153 Cold-Ethanol
Fractionation
Cell/Tissue Culture: 50,51,52
ELISA Blocking: 74
IHC/ICC/IF: 109, 110
Immunoblotting: 124, 125
Standard/Calibrator: 145
A3156 Cold-Ethanol
Fractionation
Cell/Tissue Culture: T
A4378 Cold-Ethanol
Fractionation
IHC/ICC/IF: 97
A4503 Cold-Ethanol
Fractionation
Cell/Tissue Culture: 26,27,28
ELISA Blocking: 65
IHC/ICC/IF: 98
Immunoblotting: 132, 133, 134
A6003 Cold-Ethanol
Fractionation
Cell/Tissue Culture: 46, 47
Standard/Calibrator: 139, 140
Stabilization/Diluent: 10, 155
A8806 Cold-Ethanol
Fractionation
Binding, Transport, & Carrier: 4, 5, 6, 7
Cell/Tissue Culture: 48
IHC/ICC/IF: 107
Stabilization/Diluent: 156
A9418 Cold-Ethanol
Fractionation
Cell/Tissue Culture: T
A0281 Heat-Shock Fractionation Cell/Tissue Culture: 43, 44, 45
A1470 Heat-Shock Fractionation Binding, Transport, & Carrier: 1
Cell/Tissue Culture: 1, 16, 17, 18
Immunoblotting: 115
A1595 Heat-Shock Fractionation Cell/Tissue Culture: 53, 54, 55
A2058 Heat-Shock Fractionation Immunoblotting: 123
Standard/Calibrator: 141, 142, 143
A3059 Heat-Shock Fractionation Cell/Tissue Culture: 30, 56
Immunoblotting: 118, 119
Standard/Calibrator: 137
Stabilization/Diluent: 56, 152
A3294 Heat-Shock Fractionation ChIP/ Sequencing/ Hybridization: 62
IHC/ICC/IF: 108
Standard/Calibrator: 144
A3311 Heat-Shock Fractionation Cell/Tissue Culture: T
A3803 Heat-Shock Fractionation Binding, Transport, & Carrier: 2, 3
Cell/Tissue Culture: 36
ELISA Blocking: 68
IHC/ICC/IF: 99
Standard/Calibrator: 138
A3858 Heat-Shock Fractionation ELISA Blocking: 5
A3912 Heat-Shock Fractionation Cell/Tissue Culture: 37
IHC/ICC/IF: 100
Immunoblotting: 120
A4161 Heat-Shock Fractionation Cell/Tissue Culture: 23, 24, 25
A4612 Heat-Shock Fractionation Cell/Tissue Culture: 49
A4919 Heat-Shock Fractionation Cell/Tissue Culture: 13, 14
IHC/ICC/IF: 84
A7030 Heat-Shock Fractionation Cell/Tissue Culture: 39, 40, 41, 42
ELISA Blocking: 69, 70, 71, 72, 73
IHC/ICC/IF: 106
Immunoblotting: 122
Stabilization/Diluent: 154
A7888 Heat-Shock Fractionation Cell/Tissue Culture: 31, 32, 33, 34
ELISA Blocking: 67
A7906 Heat-Shock Fractionation Cell/Tissue Culture: 29
ChIP/ Sequencing/ Hybridization: 58, 59, 60
ELISA Blocking: 66
Immunoblotting: 116, 117
Standard/Calibrator: 135, 136
Stabilization/Diluent: 149, 150, 151
A7979 Heat-Shock Fractionation Cell/Tissue Culture: T
A8022 Heat-Shock Fractionation ELISA Blocking: 63
IHC/ICC/IF: 88, 89, 90, 91, 92
Immunoblotting: 92, 112, 113, 114
Stabilization/Diluent: 147
A8412 Heat-Shock Fractionation Cell/Tissue Culture: T
A8577 Heat-Shock Fractionation Stabilization/Diluent: 153
A9085 Heat-Shock Fractionation Cell/Tissue Culture: 15 IHC/ICC/IF: 85, 86, 87
Immunoblotting: 86, 87, 126
A9430 Heat-Shock Fractionation Cell/Tissue Culture: 19
A9543 Heat-Shock Fractionation Cell/Tissue Culture: 35
A9576 Heat-Shock Fractionation Cell/Tissue Culture: T
A9647 Heat-Shock Fractionation
IHC/ICC/IF: 76, 77, 78, 79, 80, 81, 82, 83
Immunoblotting: 111
Standard/Calibrator: 127, 128, 129, 130, 131
Stabilization/Diluent: 146
B2064 Heat-Shock Fractionation Cell/Tissue Culture: 38
IHC/ICC/IF: 101, 102, 103, 104
Immunoblotting: 103
B2518 Heat-Shock Fractionation IHC/ICC/IF: 105
Immunoblotting: 121
B4287 Heat-Shock Fractionation Cell/Tissue Culture: 20, 21, 22
T ELISA Blocking: 64
IHC/ICC/IF: 93, 94, 95, 96
Stabilization/Diluent: 148
B6917 Heat-Shock Fractionation ChIP/ Sequencing/ Hybridization: 57

Table 1: BSA products sorted and cited based on purification method and applications.
T = QC test for specified application.
ChIP = chromatin immunoprecipitation;
ELISA = enzyme-linked immunosorbent assay;
IHC = immunohistochemistry;
ICC = immunocytochemistry;
IF = immunofluorescence.

BSA Structure

BSA is a single polypeptide chain consisting of about 583 amino acid residues and no carbohydrates. At pH 5-7 it contains 17 intrachain disulfide bridges and 1 sulfhydryl group.

What does bovine serum albumin do?

Albumins are a group of acidic proteins which occur plentifully in the body fluids and tissues of mammals and in some plant seeds. Unlike globulins, albumins have comparatively low molecular weights, are soluble in water, are easily crystallized, and contain an excess of acidic amino acids. Serum and plasma albumin are carbohydrate-free and comprises 55-62% of the protein present.

Albumin binds water, Ca2+, Na+, and K+. Due to a hydrophobic cleft, albumin binds fatty acids, bilirubin, hormones, and drugs. The main biological function of albumin is to regulate the colloidal osmotic pressure of blood. Human and bovine albumins contain 16% nitrogen and are often used as standards in protein calibration studies. Albumin is used to solubilize lipids and is also used as a blocking agent in western blots or ELISA applications. Globulin free albumins are suitable for use in applications where no other proteins should be present (e.g., electrophoresis).

Bovine serum albumin physical properties

pI in Water at 25°C: Fatty Acid Depleted  - 5.3, Endogenous Material  - 4.7; 4.9
pH of 1% Solution: 5.2-7
Optical Rotation: [α] 259 : -61°; [α] 264 : -63°
Stokes Radius (r s ):  3.48 nm
Sedimentation constant, S 20,W X 10 13 4.5 (monomer), 6.7 (dimer)
Diffusion constant, D 20,W X 10 7 5.9
Partial specific volume, V 20 0.733
Intrinsic viscosity, η 0.0413
Frictional ratio, f/f 0
1.30
Overall dimensions, Å 40 X 140
Refractive index increment1 (578 nm) X 10 -3 1.90
Optical absorbance, 0.667
Mean residue rotation1 [ m' ] 233 8443
Mean residue ellipticity
21.1 [θ] 209 nm ; 20.1 [θ] 222 nm
Estimated α-helix, %
54
Estimated β-form %
18

Bovine serum albumin solubility

Albumins are readily soluble in water and can only be precipitated by high concentrations of neutral salts such as ammonium sulfate. The solution stability of BSA is very good (especially if the solutions are stored as frozen aliquots). In fact, albumins are frequently used as stabilizers for other solubilized proteins (e.g., labile enzymes). However, albumin is readily coagulated by heat. When heated to 50°C or above, albumin quite rapidly forms hydrophobic aggregates which do not revert to monomers upon cooling. At somewhat lower temperatures aggregation is also expected to occur, but at relatively slower rates.

How is bovine serum albumin made?

Albumin is relatively simple to isolate and purify. One of the first methods of isolation involved extensive dialysis of serum against water and removed most globulins. A second procedure took advantage of the good solubility of albumin at low to moderate ammonium sulfate concentrations, and effected precipitation by lowering the pH. Electrophoretic isolation was also employed, as was affinity chromatography. However, none of these methods were applicable to large scale production.

Initial isolation is accomplished by heat treatment or by alcohol precipitation. Most commercial preparations are now prepared by alcohol precipitation, a method developed by E. J. Cohn and his associates in the 1940's ("Fraction V" yields albumin with a purity of about 96%), or by Heat Treatment. The additional removal of impurities can be accomplished by crystallization, preparative electrophoresis, ion exchange chromatography, affinity chromatography (e.g., ConA-agarose removes glycoproteins), heat treatment (removes globulins), low pH treatment, charcoal treatment, organic solvent precipitation (i.e., isooctane), and low temperature treatment. Charcoal treatment and organic solvent precipitation remove fatty acids.

 

 References

  1. Lin, B.; Lin, X.; Stachel, M.; Wang, E.; Luo, Y.; Lader, J.; Sun, X.; Delmar, M.; Bu, L. Culture in Glucose-Depleted Medium Supplemented with Fatty Acid and 3,3’,5-Triiodo-l-Thyronine Facilitates Purification and Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Endocrinol (Lausanne) 2017, 8, 253. https://doi.org/10.3389/fendo.2017.00253.

  2. Boteon, Y. L.; Wallace, L.; Boteon, A. P. C. S.; Mirza, D. F.; Mergental, H.; Bhogal, R. H.; Afford, S. An Effective Protocol for Pharmacological Defatting of Primary Human Hepatocytes Which Is Non-Toxic to Cholangiocytes or Intrahepatic Endothelial Cells. PLoS ONE 2018, 13 (7), e0201419. https://doi.org/10.1371/journal.pone.0201419.

  3. Aragonès, G.; Suárez, M.; Ardid-Ruiz, A.; Vinaixa, M.; Rodríguez, M. A.; Correig, X.; Arola, L.; Bladé, C. Dietary Proanthocyanidins Boost Hepatic NAD(+) Metabolism and SIRT1 Expression and Activity in a Dose-Dependent Manner in Healthy Rats. Sci Rep 2016, 6, 24977. https://doi.org/10.1038/srep24977.

  4. Liu, C.; Han, T.; Stachura, D. L.; Wang, H.; Vaisman, B. L.; Kim, J.; Klemke, R. L.; Remaley, A. T.; Rana, T. M.; Traver, D.; et al. Lipoprotein Lipase Regulates Hematopoietic Stem Progenitor Cell Maintenance through DHA Supply. Nat Commun 2018, 9 (1), 1310. https://doi.org/10.1038/s41467-018-03775-y.

  5. Ota, A.; Kovary, K. M.; Wu, O. H.; Ahrends, R.; Shen, W.-J.; Costa, M. J.; Feldman, B. J.; Kraemer, F. B.; Teruel, M. N. Using SRM-MS to Quantify Nuclear Protein Abundance Differences between Adipose Tissue Depots of Insulin-Resistant Mice. J. Lipid Res. 2015, 56 (5), 1068–1078. https://doi.org/10.1194/jlr.D056317.

  6. Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L. N.; Karoly, E. D.; Freeman, G. J.; Petkova, V.; Seth, P.; et al. PD-1 Alters T-Cell Metabolic Reprogramming by Inhibiting Glycolysis and Promoting Lipolysis and Fatty Acid Oxidation. Nat Commun 2015, 6, 6692. https://doi.org/10.1038/ncomms7692.

  7. Fang, L.; Xie, D.; Wu, X.; Cao, H.; Su, W.; Yang, J. Involvement of Endoplasmic Reticulum Stress in Albuminuria Induced Inflammasome Activation in Renal Proximal Tubular Cells. PLoS ONE 2013, 8 (8), e72344. https://doi.org/10.1371/journal.pone.0072344.

  8. Svensson, R. U.; Parker, S. J.; Eichner, L. J.; Kolar, M. J.; Wallace, M.; Brun, S. N.; Lombardo, P. S.; Van Nostrand, J. L.; Hutchins, A.; Vera, L.; et al. Inhibition of Acetyl-CoA Carboxylase Suppresses Fatty Acid Synthesis and Tumor Growth of Non-Small-Cell Lung Cancer in Preclinical Models. Nat. Med. 2016, 22 (10), 1108–1119. https://doi.org/10.1038/nm.4181.

  9. Pavani, K. C.; Hendrix, A.; Van Den Broeck, W.; Couck, L.; Szymanska, K.; Lin, X.; De Koster, J.; Van Soom, A.; Leemans, B. Isolation and Characterization of Functionally Active Extracellular Vesicles from Culture Medium Conditioned by Bovine Embryos In Vitro. Int J Mol Sci 2018, 20 (1). https://doi.org/10.3390/ijms20010038.

  10. Heras, S.; De Coninck, D. I. M.; Van Poucke, M.; Goossens, K.; Bogado Pascottini, O.; Van Nieuwerburgh, F.; Deforce, D.; De Sutter, P.; Leroy, J. L. M. R.; Gutierrez-Adan, A.; et al. Suboptimal Culture Conditions Induce More Deviations in Gene Expression in Male than Female Bovine Blastocysts. BMC Genomics 2016, 17, 72. https://doi.org/10.1186/s12864-016-2393-z.

  11. Velasco-Estevez, M.; Mampay, M.; Boutin, H.; Chaney, A.; Warn, P.; Sharp, A.; Burgess, E.; Moeendarbary, E.; Dev, K. K.; Sheridan, G. K. Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes. Front Aging Neurosci 2018, 10, 332. https://doi.org/10.3389/fnagi.2018.00332.

  12. Saka, Y.; Smith, J. C. A Mechanism for the Sharp Transition of Morphogen Gradient Interpretation in Xenopus. BMC Dev. Biol. 2007, 7, 47. https://doi.org/10.1186/1471-213X-7-47.

  13. Liu, H.-Y.; Chen, C.-Y.; Hung, Y.-F.; Lin, H.-R.; Chao, H.-W.; Shih, P.-Y.; Chuang, C.-N.; Li, W.-P.; Huang, T.-N.; Hsueh, Y.-P. RNase A Promotes Proliferation of Neuronal Progenitor Cells via an ERK-Dependent Pathway. Front Mol Neurosci 2018, 11, 428. https://doi.org/10.3389/fnmol.2018.00428.

  14. Mao, X.; Del Bigio, M. R. Interference with Protease-Activated Receptor 1 Does Not Reduce Damage to Subventricular Zone Cells of Immature Rodent Brain Following Exposure to Blood or Blood Plasma. J Negat Results Biomed 2015, 14, 3. https://doi.org/10.1186/s12952-014-0022-4.

  15. Abe, K.; Zhao, L.; Periasamy, A.; Intes, X.; Barroso, M. Non-Invasive in Vivo Imaging of near Infrared-Labeled Transferrin in Breast Cancer Cells and Tumors Using Fluorescence Lifetime FRET. PLoS ONE 2013, 8 (11), e80269. https://doi.org/10.1371/journal.pone.0080269.

  16. Khraiwesh, M.; Leed, S.; Roncal, N.; Johnson, J.; Sciotti, R.; Smith, P.; Read, L.; Paris, R.; Hudson, T.; Hickman, M.; et al. Antileishmanial Activity of Compounds Derived from the Medicines for Malaria Venture Open Access Box Against Intracellular Leishmania Major Amastigotes. Am. J. Trop. Med. Hyg. 2016, 94 (2), 340–347. https://doi.org/10.4269/ajtmh.15-0448.

  17. Shekhar, A.; Lin, X.; Lin, B.; Liu, F.-Y.; Zhang, J.; Khodadadi-Jamayran, A.; Tsirigos, A.; Bu, L.; Fishman, G. I.; Park, D. S. ETV1 Activates a Rapid Conduction Transcriptional Program in Rodent and Human Cardiomyocytes. Sci Rep 2018, 8 (1), 9944. https://doi.org/10.1038/s41598-018-28239-7.

  18. Gustafson-Wagner, E.; Stipp, C. S. The CD9/CD81 Tetraspanin Complex and Tetraspanin CD151 Regulate Α3β1 Integrin-Dependent Tumor Cell Behaviors by Overlapping but Distinct Mechanisms. PLoS ONE 2013, 8 (4), e61834. https://doi.org/10.1371/journal.pone.0061834.

  19. Agrawal, S.; Guess, A. J.; Chanley, M. A.; Smoyer, W. E. Albumin-Induced Podocyte Injury and Protection Are Associated with Regulation of COX-2. Kidney Int. 2014, 86 (6), 1150–1160. https://doi.org/10.1038/ki.2014.196.

  20. Adhikary, G.; Grun, D.; Kerr, C.; Balasubramanian, S.; Rorke, E. A.; Vemuri, M.; Boucher, S.; Bickenbach, J. R.; Hornyak, T.; Xu, W.; et al. Identification of a Population of Epidermal Squamous Cell Carcinoma Cells with Enhanced Potential for Tumor Formation. PLoS ONE 2013, 8 (12), e84324. https://doi.org/10.1371/journal.pone.0084324.

  21. Tomlinson, S.; Taylor, P. W.; Morgan, B. P.; Luzio, J. P. Killing of Gram-Negative Bacteria by Complement. Fractionation of Cell Membranes after Complement C5b-9 Deposition on to the Surface of Salmonella Minnesota Re595. Biochem. J. 1989, 263 (2), 505–511. https://doi.org/10.1042/bj2630505.

  22. Fisher, M. L.; Ciavattone, N.; Grun, D.; Adhikary, G.; Eckert, R. L. Sulforaphane Reduces YAP/∆Np63α Signaling to Reduce Cancer Stem Cell Survival and Tumor Formation. Oncotarget 2017, 8 (43), 73407–73418. https://doi.org/10.18632/oncotarget.20562.

  23. Šmít, D.; Fouquet, C.; Pincet, F.; Zapotocky, M.; Trembleau, A. Axon Tension Regulates Fasciculation/Defasciculation through the Control of Axon Shaft Zippering. Elife 2017, 6. https://doi.org/10.7554/eLife.19907.

  24. Yu, Y.; Blokhuis, B.; Derks, Y.; Kumari, S.; Garssen, J.; Redegeld, F. Human Mast Cells Promote Colon Cancer Growth via Bidirectional Crosstalk: Studies in 2D and 3D Coculture Models. Oncoimmunology 2018, 7 (11), e1504729. https://doi.org/10.1080/2162402X.2018.1504729.

  25. Buchser, W. J.; Slepak, T. I.; Gutierrez-Arenas, O.; Bixby, J. L.; Lemmon, V. P. Kinase/Phosphatase Overexpression Reveals Pathways Regulating Hippocampal Neuron Morphology. Mol. Syst. Biol. 2010, 6, 391. https://doi.org/10.1038/msb.2010.52.

  26. Schöneberg, J.; Dambournet, D.; Liu, T.-L.; Forster, R.; Hockemeyer, D.; Betzig, E.; Drubin, D. G. 4D Cell Biology: Big Data Image Analytics and Lattice Light-Sheet Imaging Reveal Dynamics of Clathrin-Mediated Endocytosis in Stem Cell-Derived Intestinal Organoids. Mol. Biol. Cell 2018, 29 (24), 2959–2968. https://doi.org/10.1091/mbc.E18-06-0375.

  27. Kuboyama, K.; Tanga, N.; Suzuki, R.; Fujikawa, A.; Noda, M. Protamine Neutralizes Chondroitin Sulfate Proteoglycan-Mediated Inhibition of Oligodendrocyte Differentiation. PLoS ONE 2017, 12 (12), e0189164. https://doi.org/10.1371/journal.pone.0189164.

  28. Mehta, V.; Abi-Nader, K. N.; Shangaris, P.; Shaw, S. W. S.; Filippi, E.; Benjamin, E.; Boyd, M.; Peebles, D. M.; Martin, J.; Zachary, I.; et al. Local Over-Expression of VEGF-DΔNΔC in the Uterine Arteries of Pregnant Sheep Results in Long-Term Changes in Uterine Artery Contractility and Angiogenesis. PLoS ONE 2014, 9 (6), e100021. https://doi.org/10.1371/journal.pone.0100021.

  29. Li, L.; Ma, P.; Liu, Y.; Huang, C.; O, W.; Tang, F.; Zhang, J. V. Intermedin Attenuates LPS-Induced Inflammation in the Rat Testis. PLoS ONE 2013, 8 (6), e65278. https://doi.org/10.1371/journal.pone.0065278.

  30. Zujur, D.; Kanke, K.; Lichtler, A. C.; Hojo, H.; Chung, U.-I.; Ohba, S. Three-Dimensional System Enabling the Maintenance and Directed Differentiation of Pluripotent Stem Cells under Defined Conditions. Sci Adv 2017, 3 (5), e1602875. https://doi.org/10.1126/sciadv.1602875.

  31. Shatzkes, K.; Teferedegne, B.; Murata, H. A Simple, Inexpensive Method for Preparing Cell Lysates Suitable for Downstream Reverse Transcription Quantitative PCR. Sci Rep 2014, 4, 4659. https://doi.org/10.1038/srep04659.

  32. Adamkova, K.; Yi, Y.-J.; Petr, J.; Zalmanova, T.; Hoskova, K.; Jelinkova, P.; Moravec, J.; Kralickova, M.; Sutovsky, M.; Sutovsky, P.; et al. SIRT1-Dependent Modulation of Methylation and Acetylation of Histone H3 on Lysine 9 (H3K9) in the Zygotic Pronuclei Improves Porcine Embryo Development. J Anim Sci Biotechnol 2017, 8, 83. https://doi.org/10.1186/s40104-017-0214-0.

  33. Al-Share, Q. Y.; DeAngelis, A. M.; Lester, S. G.; Bowman, T. A.; Ramakrishnan, S. K.; Abdallah, S. L.; Russo, L.; Patel, P. R.; Kaw, M. K.; Raphael, C. K.; et al. Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance. Diabetes 2015, 64 (8), 2780–2790. https://doi.org/10.2337/db14-1772.

  34. Yi, Y.-J.; Sutovsky, M.; Kennedy, C.; Sutovsky, P. Identification of the Inorganic Pyrophosphate Metabolizing, ATP Substituting Pathway in Mammalian Spermatozoa. PLoS ONE 2012, 7 (4), e34524. https://doi.org/10.1371/journal.pone.0034524.

  35. Ellis, C. E.; Ellis, L. K.; Korbutt, R. S.; Suuronen, E. J.; Korbutt, G. S. Development and Characterization of a Collagen-Based Matrix for Vascularization and Cell Delivery. Biores Open Access 2015, 4 (1), 188–197. https://doi.org/10.1089/biores.2015.0007.

  36. Christou-Kent, M.; Kherraf, Z.-E.; Amiri-Yekta, A.; Le Blévec, E.; Karaouzène, T.; Conne, B.; Escoffier, J.; Assou, S.; Guttin, A.; Lambert, E.; et al. PATL2 Is a Key Actor of Oocyte Maturation Whose Invalidation Causes Infertility in Women and Mice. EMBO Mol Med 2018, 10 (5). https://doi.org/10.15252/emmm.201708515.

  37. Pettersson, H.; Zarnegar, B.; Westin, A.; Persson, V.; Peuckert, C.; Jonsson, J.; Hallgren, J.; Kullander, K. SLC10A4 Regulates IgE-Mediated Mast Cell Degranulation in Vitro and Mast Cell-Mediated Reactions in Vivo. Sci Rep 2017, 7 (1), 1085. https://doi.org/10.1038/s41598-017-01121-8.

  38. Meng, X.; Gao, X.; Zhang, Z.; Zhou, X.; Wu, L.; Yang, M.; Wang, K.; Ren, H.; Sun, B.; Wang, T. Protective Effect and Mechanism of Rat Recombinant S100 Calcium-Binding Protein A4 on Oxidative Stress Injury of Rat Vascular Endothelial Cells. Oncol Lett 2018, 16 (3), 3614–3622. https://doi.org/10.3892/ol.2018.9135.

  39. Yang, M.-C.; Wang, H.-C.; Hou, Y.-C.; Tung, H.-L.; Chiu, T.-J.; Shan, Y.-S. Blockade of Autophagy Reduces Pancreatic Cancer Stem Cell Activity and Potentiates the Tumoricidal Effect of Gemcitabine. Mol. Cancer 2015, 14, 179. https://doi.org/10.1186/s12943-015-0449-3.

  40. Hohwieler, M.; Illing, A.; Hermann, P. C.; Mayer, T.; Stockmann, M.; Perkhofer, L.; Eiseler, T.; Antony, J. S.; Müller, M.; Renz, S.; et al. Human Pluripotent Stem Cell-Derived Acinar/Ductal Organoids Generate Human Pancreas upon Orthotopic Transplantation and Allow Disease Modelling. Gut 2017, 66 (3), 473–486. https://doi.org/10.1136/gutjnl-2016-312423.

  41. Zhang, L.; Jambusaria, A.; Hong, Z.; Marsboom, G.; Toth, P. T.; Herbert, B.-S.; Malik, A. B.; Rehman, J. SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells. Circulation 2017, 135 (25), 2505–2523. https://doi.org/10.1161/CIRCULATIONAHA.116.025722.

  42. Kakiuchi, K.; Taniguchi, K.; Kubota, H. Conserved and Non-Conserved Characteristics of Porcine Glial Cell Line-Derived Neurotrophic Factor Expressed in the Testis. Sci Rep 2018, 8 (1), 7656. https://doi.org/10.1038/s41598-018-25924-5.

  43. Yi, Y.-J.; Lee, I.-K.; Lee, S.-M.; Yun, B.-S. An Antioxidant Davallialactone from Phellinus Baumii Enhances Sperm Penetration on In Vitro Fertilization of Pigs. Mycobiology 2016, 44 (1), 54–57. https://doi.org/10.5941/MYCO.2016.44.1.54.

  44. Tourzani, D. A.; Paudel, B.; Miranda, P. V.; Visconti, P. E.; Gervasi, M. G. Changes in Protein O-GlcNAcylation During Mouse Epididymal Sperm Maturation. Front Cell Dev Biol 2018, 6, 60. https://doi.org/10.3389/fcell.2018.00060.

  45. Yi, Y.-J.; Kamala-Kannan, S.; Lim, J.-M.; Oh, B.-T.; Lee, S.-M. Effects of Difructose Dianhydride (DFA)-IV on in Vitro Fertilization in Pigs. J Biomed Res 2017, 31 (5), 453–461. https://doi.org/10.7555/JBR.31.20160115.

  46. Chen, Q.; Xiong, C.; Jia, K.; Jin, J.; Li, Z.; Huang, Y.; Liu, Y.; Wang, L.; Luo, H.; Li, H.; et al. Hepatic Transcriptome Analysis from HFD-Fed Mice Defines a Long Noncoding RNA Regulating Cellular Cholesterol Levels. J. Lipid Res. 2019, 60 (2), 341–352. https://doi.org/10.1194/jlr.M086215.

  47. Vandaele, L.; Wesselingh, W.; De Clercq, K.; De Leeuw, I.; Favoreel, H.; Van Soom, A.; Nauwynck, H. Susceptibility of in Vitro Produced Hatched Bovine Blastocysts to Infection with Bluetongue Virus Serotype 8. Vet. Res. 2011, 42, 14. https://doi.org/10.1186/1297-9716-42-14.

  48. Chandra, V.; Swetha, G.; Muthyala, S.; Jaiswal, A. K.; Bellare, J. R.; Nair, P. D.; Bhonde, R. R. Islet-like Cell Aggregates Generated from Human Adipose Tissue Derived Stem Cells Ameliorate Experimental Diabetes in Mice. PLoS ONE 2011, 6 (6), e20615. https://doi.org/10.1371/journal.pone.0020615.

  49. Sinha, R. A.; Singh, B. K.; Zhou, J.; Xie, S.; Farah, B. L.; Lesmana, R.; Ohba, K.; Tripathi, M.; Ghosh, S.; Hollenberg, A. N.; et al. Loss of ULK1 Increases RPS6KB1-NCOR1 Repression of NR1H/LXR-Mediated Scd1 Transcription and Augments Lipotoxicity in Hepatic Cells. Autophagy 2017, 13 (1), 169–186. https://doi.org/10.1080/15548627.2016.1235123.

  50. Hallmark, N.; Walker, M.; McKinnell, C.; Mahood, I. K.; Scott, H.; Bayne, R.; Coutts, S.; Anderson, R. A.; Greig, I.; Morris, K.; et al. Effects of Monobutyl and Di(n-Butyl) Phthalate in Vitro on Steroidogenesis and Leydig Cell Aggregation in Fetal Testis Explants from the Rat: Comparison with Effects in Vivo in the Fetal Rat and Neonatal Marmoset and in Vitro in the Human. Environ. Health Perspect. 2007, 115 (3), 390–396. https://doi.org/10.1289/ehp.9490.

  51. García-Contreras, M.; Vera-Donoso, C. D.; Hernández-Andreu, J. M.; García-Verdugo, J. M.; Oltra, E. Therapeutic Potential of Human Adipose-Derived Stem Cells (ADSCs) from Cancer Patients: A Pilot Study. PLoS ONE 2014, 9 (11), e113288. https://doi.org/10.1371/journal.pone.0113288.

  52. Pavlovic, B. J.; Blake, L. E.; Roux, J.; Chavarria, C.; Gilad, Y. A Comparative Assessment of Human and Chimpanzee IPSC-Derived Cardiomyocytes with Primary Heart Tissues. Sci Rep 2018, 8 (1), 15312. https://doi.org/10.1038/s41598-018-33478-9.

  53. Frank, S.; Zhang, M.; Schöler, H. R.; Greber, B. Small Molecule-Assisted, Line-Independent Maintenance of Human Pluripotent Stem Cells in Defined Conditions. PLoS ONE 2012, 7 (7), e41958. https://doi.org/10.1371/journal.pone.0041958.

  54. Amos, P. J.; Fung, S.; Case, A.; Kifelew, J.; Osnis, L.; Smith, C. L.; Green, K.; Naydenov, A.; Aloi, M.; Hubbard, J. J.; et al. Modulation of Hematopoietic Lineage Specification Impacts TREM2 Expression in Microglia-Like Cells Derived From Human Stem Cells. ASN Neuro 2017, 9 (4), 1759091417716610. https://doi.org/10.1177/1759091417716610.

  55. Ämmälä, C.; Drury, W. J.; Knerr, L.; Ahlstedt, I.; Stillemark-Billton, P.; Wennberg-Huldt, C.; Andersson, E.-M.; Valeur, E.; Jansson-Löfmark, R.; Janzén, D.; et al. Targeted Delivery of Antisense Oligonucleotides to Pancreatic β-Cells. Sci Adv 2018, 4 (10), eaat3386. https://doi.org/10.1126/sciadv.aat3386.

  56. Orellana, A.; García-González, V.; López, R.; Pascual-Guiral, S.; Lozoya, E.; Díaz, J.; Casals, D.; Barrena, A.; Paris, S.; Andrés, M.; et al. Application of a Phenotypic Drug Discovery Strategy to Identify Biological and Chemical Starting Points for Inhibition of TSLP Production in Lung Epithelial Cells. PLoS ONE 2018, 13 (1), e0189247. https://doi.org/10.1371/journal.pone.0189247.

  57. Churko, J. M.; Garg, P.; Treutlein, B.; Venkatasubramanian, M.; Wu, H.; Lee, J.; Wessells, Q. N.; Chen, S.-Y.; Chen, W.-Y.; Chetal, K.; et al. Defining Human Cardiac Transcription Factor Hierarchies Using Integrated Single-Cell Heterogeneity Analysis. Nat Commun 2018, 9 (1), 4906. https://doi.org/10.1038/s41467-018-07333-4.

  58. Ibrahim, M. M.; Karabacak, A.; Glahs, A.; Kolundzic, E.; Hirsekorn, A.; Carda, A.; Tursun, B.; Zinzen, R. P.; Lacadie, S. A.; Ohler, U. Determinants of Promoter and Enhancer Transcription Directionality in Metazoans. Nat Commun 2018, 9 (1), 4472. https://doi.org/10.1038/s41467-018-06962-z.

  59. Roelli, M. A.; Ruffieux-Daidié, D.; Stooss, A.; ElMokh, O.; Phillips, W. A.; Dettmer, M. S.; Charles, R.-P. PIK3CAH1047R-Induced Paradoxical ERK Activation Results in Resistance to BRAFV600E Specific Inhibitors in BRAFV600E PIK3CAH1047R Double Mutant Thyroid Tumors. Oncotarget 2017, 8 (61), 103207–103222. https://doi.org/10.18632/oncotarget.21732.

  60. Navrátil, V.; Schimer, J.; Tykvart, J.; Knedlík, T.; Vik, V.; Majer, P.; Konvalinka, J.; Šácha, P. DNA-Linked Inhibitor Antibody Assay (DIANA) for Sensitive and Selective Enzyme Detection and Inhibitor Screening. Nucleic Acids Res. 2017, 45 (2), e10. https://doi.org/10.1093/nar/gkw853.

  61. Loudig, O.; Wang, T.; Ye, K.; Lin, J.; Wang, Y.; Ramnauth, A.; Liu, C.; Stark, A.; Chitale, D.; Greenlee, R.; et al. Evaluation and Adaptation of a Laboratory-Based CDNA Library Preparation Protocol for Retrospective Sequencing of Archived MicroRNAs from up to 35-Year-Old Clinical FFPE Specimens. Int J Mol Sci 2017, 18 (3). https://doi.org/10.3390/ijms18030627.

  62. de Bruin, A.; A Cornelissen, P. W.; Kirchmaier, B. C.; Mokry, M.; Iich, E.; Nirmala, E.; Liang, K.-H.; D Végh, A. M.; Scholman, K. T.; Groot Koerkamp, M. J.; et al. Genome-Wide Analysis Reveals NRP1 as a Direct HIF1α-E2F7 Target in the Regulation of Motorneuron Guidance in Vivo. Nucleic Acids Res. 2016, 44 (8), 3549–3566. https://doi.org/10.1093/nar/gkv1471.

  63. Kuck, L. R.; Sorensen, M.; Matthews, E.; Srivastava, I.; Cox, M. M. J.; Rowlen, K. L. Titer on Chip: New Analytical Tool for Influenza Vaccine Potency Determination. PLoS ONE 2014, 9 (10), e109616. https://doi.org/10.1371/journal.pone.0109616.

  64. Chiu, R. Y. T.; Thach, A. V.; Wu, C. M.; Wu, B. M.; Kamei, D. T. An Aqueous Two-Phase System for the Concentration and Extraction of Proteins from the Interface for Detection Using the Lateral-Flow Immunoassay. PLoS ONE 2015, 10 (11), e0142654. https://doi.org/10.1371/journal.pone.0142654.

  65. Ghosh, J. G.; Nguyen, A. A.; Bigelow, C. E.; Poor, S.; Qiu, Y.; Rangaswamy, N.; Ornberg, R.; Jackson, B.; Mak, H.; Ezell, T.; et al. Long-Acting Protein Drugs for the Treatment of Ocular Diseases. Nat Commun 2017, 8, 14837. https://doi.org/10.1038/ncomms14837.

  66. Bleicher, A. V.; Unger, H. W.; Rogerson, S. J.; Aitken, E. H. A Sandwich Enzyme-Linked Immunosorbent Assay for the Quantitation of Human Plasma Ferritin. MethodsX 2018, 5, 648–651. https://doi.org/10.1016/j.mex.2018.06.010.

  67. Hassoun, E.; Safrin, M.; Wineman, E.; Weiss, P.; Kessler, E. Data Comparing the Plasma Levels of Procollagen C-Proteinase Enhancer 1 (PCPE-1) in Healthy Individuals and Liver Fibrosis Patients. Data Brief 2017, 14, 777–781. https://doi.org/10.1016/j.dib.2017.08.047.

  68. Alvarez-Castelao, B.; Gorostidi, A.; Ruíz-Martínez, J.; López de Munain, A.; Castaño, J. G. Epitope Mapping of Antibodies to Alpha-Synuclein in LRRK2 Mutation Carriers, Idiopathic Parkinson Disease Patients, and Healthy Controls. Front Aging Neurosci 2014, 6, 169. https://doi.org/10.3389/fnagi.2014.00169.

  69. Park, H.-S.; Liu, G.; Liu, Q.; Zhou, Y. Swine Influenza Virus Induces RIPK1/DRP1-Mediated Interleukin-1 Beta Production. Viruses 2018, 10 (8). https://doi.org/10.3390/v10080419.

  70. Gatault, P.; Brachet, G.; Ternant, D.; Degenne, D.; Récipon, G.; Barbet, C.; Gyan, E.; Gouilleux-Gruart, V.; Bordes, C.; Farrell, A.; et al. Therapeutic Drug Monitoring of Eculizumab: Rationale for an Individualized Dosing Schedule. MAbs 2015, 7 (6), 1205–1211. https://doi.org/10.1080/19420862.2015.1086049.

  71. Hauser, D.; Estermann, M.; Milosevic, A.; Steinmetz, L.; Vanhecke, D.; Septiadi, D.; Drasler, B.; Petri-Fink, A.; Ball, V.; Rothen-Rutishauser, B. Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing. Nanomaterials (Basel) 2018, 8 (12). https://doi.org/10.3390/nano8121065.

  72. Huang, Y.; DiDonato, J. A.; Levison, B. S.; Schmitt, D.; Li, L.; Wu, Y.; Buffa, J.; Kim, T.; Gerstenecker, G. S.; Gu, X.; et al. An Abundant Dysfunctional Apolipoprotein A1 in Human Atheroma. Nat. Med. 2014, 20 (2), 193–203. https://doi.org/10.1038/nm.3459.

  73. Pasternak, J. A.; Aiyer, V. I. A.; Hamonic, G.; Beaulieu, A. D.; Columbus, D. A.; Wilson, H. L. Molecular and Physiological Effects on the Small Intestine of Weaner Pigs Following Feeding with Deoxynivalenol-Contaminated Feed. Toxins (Basel) 2018, 10 (1). https://doi.org/10.3390/toxins10010040.

  74. Simojoki, H.; Salomäki, T.; Taponen, S.; Iivanainen, A.; Pyörälä, S. Innate Immune Response in Experimentally Induced Bovine Intramammary Infection with Staphylococcus Simulans and S. Epidermidis. Vet. Res. 2011, 42, 49. https://doi.org/10.1186/1297-9716-42-49.

  75. Lin, X.-Y.; Cai, F.-F.; Wang, M.-H.; Pan, X.; Wang, F.; Cai, L.; Cui, R.-R.; Chen, S.; Biskup, E. Mammalian Sterile 20-like Kinase 1 Expression and Its Prognostic Significance in Patients with Breast Cancer. Oncol Lett 2017, 14 (5), 5457–5463. https://doi.org/10.3892/ol.2017.6852.

  76. Lee, J. W.; Park, H. S.; Park, S.-A.; Ryu, S.-H.; Meng, W.; Jürgensmeier, J. M.; Kurie, J. M.; Hong, W. K.; Boyer, J. L.; Herbst, R. S.; et al. A Novel Small-Molecule Inhibitor Targeting CREB-CBP Complex Possesses Anti-Cancer Effects along with Cell Cycle Regulation, Autophagy Suppression and Endoplasmic Reticulum Stress. PLoS ONE 2015, 10 (4), e0122628. https://doi.org/10.1371/journal.pone.0122628.

  77. La Rovere, R. M. L.; Quattrocelli, M.; Pietrangelo, T.; Di Filippo, E. S.; Maccatrozzo, L.; Cassano, M.; Mascarello, F.; Barthélémy, I.; Blot, S.; Sampaolesi, M.; et al. Myogenic Potential of Canine Craniofacial Satellite Cells. Front Aging Neurosci 2014, 6, 90. https://doi.org/10.3389/fnagi.2014.00090.

  78. Hangen, E.; Cordelières, F. P.; Petersen, J. D.; Choquet, D.; Coussen, F. Neuronal Activity and Intracellular Calcium Levels Regulate Intracellular Transport of Newly Synthesized AMPAR. Cell Rep 2018, 24 (4), 1001-1012.e3. https://doi.org/10.1016/j.celrep.2018.06.095.

  79. Moran, A. W.; Al-Rammahi, M. A.; Batchelor, D. J.; Bravo, D. M.; Shirazi-Beechey, S. P. Glucagon-Like Peptide-2 and the Enteric Nervous System Are Components of Cell-Cell Communication Pathway Regulating Intestinal Na+/Glucose Co-Transport. Front Nutr 2018, 5, 101. https://doi.org/10.3389/fnut.2018.00101.

  80. Suzuki, S.; Nozawa, Y.; Tsukamoto, S.; Kaneko, T.; Imai, H.; Minami, N. ING3 Is Essential for Asymmetric Cell Division during Mouse Oocyte Maturation. PLoS ONE 2013, 8 (9), e74749. https://doi.org/10.1371/journal.pone.0074749.

  81. Jiang, B.; Harper, M. M.; Kecova, H.; Adamus, G.; Kardon, R. H.; Grozdanic, S. D.; Kuehn, M. H. Neuroinflammation in Advanced Canine Glaucoma. Mol. Vis. 2010, 16, 2092–2108.

  82. Prokopuk, L.; Hogg, K.; Western, P. S. Pharmacological Inhibition of EZH2 Disrupts the Female Germline Epigenome. Clin Epigenetics 2018, 10, 33. https://doi.org/10.1186/s13148-018-0465-4.

  83. Krendl, C.; Shaposhnikov, D.; Rishko, V.; Ori, C.; Ziegenhain, C.; Sass, S.; Simon, L.; Müller, N. S.; Straub, T.; Brooks, K. E.; et al. GATA2/3-TFAP2A/C Transcription Factor Network Couples Human Pluripotent Stem Cell Differentiation to Trophectoderm with Repression of Pluripotency. Proc. Natl. Acad. Sci. U.S.A. 2017, 114 (45), E9579–E9588. https://doi.org/10.1073/pnas.1708341114.

  84. Xie, Y.; Schutte, R. J.; Ng, N. N.; Ess, K. C.; Schwartz, P. H.; O’Dowd, D. K. Reproducible and Efficient Generation of Functionally Active Neurons from Human HiPSCs for Preclinical Disease Modeling. Stem Cell Res 2018, 26, 84–94. https://doi.org/10.1016/j.scr.2017.12.003.

  85. Begemann, I.; Viplav, A.; Rasch, C.; Galic, M. Stochastic Micro-Pattern for Automated Correlative Fluorescence - Scanning Electron Microscopy. Sci Rep 2015, 5, 17973. https://doi.org/10.1038/srep17973.

  86. Schmidt, N. C.; Kahms, M.; Hüve, J.; Klingauf, J. Intrinsic Refractive Index Matched 3D DSTORM with Two Objectives: Comparison of Detection Techniques. Sci Rep 2018, 8 (1), 13343. https://doi.org/10.1038/s41598-018-31595-z.

  87. Oladipupo, S. S.; Kabir, A. U.; Smith, C.; Choi, K.; Ornitz, D. M. Impaired Tumor Growth and Angiogenesis in Mice Heterozygous for Vegfr2 (Flk1). Sci Rep 2018, 8 (1), 14724. https://doi.org/10.1038/s41598-018-33037-2.

  88. Kelder, T. P.; Vicente-Steijn, R.; Harryvan, T. J.; Kosmidis, G.; Gittenberger-de Groot, A. C.; Poelmann, R. E.; Schalij, M. J.; DeRuiter, M. C.; Jongbloed, M. R. M. The Sinus Venosus Myocardium Contributes to the Atrioventricular Canal: Potential Role during Atrioventricular Node Development? J. Cell. Mol. Med. 2015, 19 (6), 1375–1389. https://doi.org/10.1111/jcmm.12525.

  89. Bonnart, C.; Gérus, M.; Hoareau-Aveilla, C.; Kiss, T.; Caizergues-Ferrer, M.; Henry, Y.; Henras, A. K. Mammalian HCA66 Protein Is Required for Both Ribosome Synthesis and Centriole Duplication. Nucleic Acids Res. 2012, 40 (13), 6270–6289. https://doi.org/10.1093/nar/gks234.

  90. Thorens, B.; Tarussio, D.; Maestro, M. A.; Rovira, M.; Heikkilä, E.; Ferrer, J. Ins1(Cre) Knock-in Mice for Beta Cell-Specific Gene Recombination. Diabetologia 2015, 58 (3), 558–565. https://doi.org/10.1007/s00125-014-3468-5.

  91. Peterson, J. C.; Chughtai, M.; Wisse, L. J.; Gittenberger-de Groot, A. C.; Feng, Q.; Goumans, M.-J. T. H.; VanMunsteren, J. C.; Jongbloed, M. R. M.; DeRuiter, M. C. Bicuspid Aortic Valve Formation: Nos3 Mutation Leads to Abnormal Lineage Patterning of Neural Crest Cells and the Second Heart Field. Dis Model Mech 2018, 11 (10). https://doi.org/10.1242/dmm.034637.

  92. Chronopoulos, A.; Robinson, B.; Sarper, M.; Cortes, E.; Auernheimer, V.; Lachowski, D.; Attwood, S.; García, R.; Ghassemi, S.; Fabry, B.; et al. ATRA Mechanically Reprograms Pancreatic Stellate Cells to Suppress Matrix Remodelling and Inhibit Cancer Cell Invasion. Nat Commun 2016, 7, 12630. https://doi.org/10.1038/ncomms12630.

  93. Gardner, J. F.; Cushion, T. D.; Niotakis, G.; Olson, H. E.; Grant, P. E.; Scott, R. H.; Stoodley, N.; Cohen, J. S.; Naidu, S.; Attie-Bitach, T.; et al. Clinical and Functional Characterization of the Recurrent TUBA1A p.(Arg2His) Mutation. Brain Sci 2018, 8 (8). https://doi.org/10.3390/brainsci8080145.

  94. Burns, T. A.; Dours-Zimmermann, M. T.; Zimmermann, D. R.; Krug, E. L.; Comte-Walters, S.; Reyes, L.; Davis, M. A.; Schey, K. L.; Schwacke, J. H.; Kern, C. B.; et al. Imbalanced Expression of Vcan MRNA Splice Form Proteins Alters Heart Morphology and Cellular Protein Profiles. PLoS ONE 2014, 9 (2), e89133. https://doi.org/10.1371/journal.pone.0089133.

  95. Bryukhovetskiy, I. S.; Dyuizen, I. V.; Shevchenko, V. E.; Bryukhovetskiy, A. S.; Mischenko, P. V.; Milkina, E. V.; Khotimchenko, Y. S. Hematopoietic Stem Cells as a Tool for the Treatment of Glioblastoma Multiforme. Mol Med Rep 2016, 14 (5), 4511–4520. https://doi.org/10.3892/mmr.2016.5852.

  96. Durst, R.; Sauls, K.; Peal, D. S.; deVlaming, A.; Toomer, K.; Leyne, M.; Salani, M.; Talkowski, M. E.; Brand, H.; Perrocheau, M.; et al. Mutations in DCHS1 Cause Mitral Valve Prolapse. Nature 2015, 525 (7567), 109–113. https://doi.org/10.1038/nature14670.

  97. Choy, A. T. H.; Chan, B. P. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering. PLoS ONE 2015, 10 (6), e0131827. https://doi.org/10.1371/journal.pone.0131827.

  98. May, U.; Prince, S.; Vähätupa, M.; Laitinen, A. M.; Nieminen, K.; Uusitalo-Järvinen, H.; Järvinen, T. A. H. Resistance of R-Ras Knockout Mice to Skin Tumour Induction. Sci Rep 2015, 5, 11663. https://doi.org/10.1038/srep11663.

  99. Raeven, R. H. M.; Brummelman, J.; Pennings, J. L. A.; Nijst, O. E. M.; Kuipers, B.; Blok, L. E. R.; Helm, K.; van Riet, E.; Jiskoot, W.; van Els, C. A. C. M.; et al. Molecular Signatures of the Evolving Immune Response in Mice Following a Bordetella Pertussis Infection. PLoS ONE 2014, 9 (8), e104548. https://doi.org/10.1371/journal.pone.0104548.

  100. Cheng, B.; Zhu, Q.; Lin, W.; Wang, L. MicroRNA-122 Inhibits Epithelial-Mesenchymal Transition of Hepatic Stellate Cells Induced by the TGF-Β1/Smad Signaling Pathway. Exp Ther Med 2019, 17 (1), 284–290. https://doi.org/10.3892/etm.2018.6962.

  101. Zhang, J.; Pan, Q.; Yan, W.; Wang, Y.; He, X.; Zhao, Z. Overexpression of MMP21 and MMP28 Is Associated with Gastric Cancer Progression and Poor Prognosis. Oncol Lett 2018, 15 (5), 7776–7782. https://doi.org/10.3892/ol.2018.8328.

  102. Wei, Q.; Liu, Q.; Ren, C.; Liu, J.; Cai, W.; Zhu, M.; Jin, H.; He, M.; Yu, J. Effects of Bradykinin on TGF‑β1‑induced Epithelial‑mesenchymal Transition in ARPE‑19 Cells. Mol Med Rep 2018, 17 (4), 5878–5886. https://doi.org/10.3892/mmr.2018.8556.

  103. Gao, X.; Xie, H.; Zhu, S.; Yu, B.; Xian, Y.; Ouyang, Q.; Ji, Y.; Yang, X.; Wen, C.; Wang, P.; et al. The Combination of Human Urinary Kallidinogenase and Mild Hypothermia Protects Adult Rats Against Hypoxic-Ischemic Encephalopathy-Induced Injury by Promoting Angiogenesis and Regeneration. Front Aging Neurosci 2018, 10, 196. https://doi.org/10.3389/fnagi.2018.00196.

  104. Hu, Q.; Yu, B.; Chen, Q.; Wang, Y.; Ling, Y.; Sun, S.; Shi, Y.; Zhou, C. Effect of Linguizhugan Decoction on Neuroinflammation and Expression Disorder of the Amyloid Β‑related Transporters RAGE and LRP‑1 in a Rat Model of Alzheimer’s Disease. Mol Med Rep 2018, 17 (1), 827–834. https://doi.org/10.3892/mmr.2017.7983.

  105. Larkin, D. J.; Kartchner, J. Z.; Doxey, A. S.; Hollis, W. R.; Rees, J. L.; Wilhelm, S. K.; Draper, C. S.; Peterson, D. M.; Jackson, G. G.; Ingersoll, C.; et al. Inflammatory Markers Associated with Osteoarthritis after Destabilization Surgery in Young Mice with and without Receptor for Advanced Glycation End-Products (RAGE). Front Physiol 2013, 4, 121. https://doi.org/10.3389/fphys.2013.00121.

  106. Avogaro, L.; Querido, E.; Dalachi, M.; Jantsch, M. F.; Chartrand, P.; Cusanelli, E. Live-Cell Imaging Reveals the Dynamics and Function of Single-Telomere TERRA Molecules in Cancer Cells. RNA Biol 2018, 15 (6), 787–796. https://doi.org/10.1080/15476286.2018.1456300.

  107. Skytt, D. M.; Toft-Kehler, A. K.; Brændstrup, C. T.; Cejvanovic, S.; Gurubaran, I. S.; Bergersen, L. H.; Kolko, M. Glia-Neuron Interactions in the Retina Can Be Studied in Cocultures of Müller Cells and Retinal Ganglion Cells. Biomed Res Int 2016, 2016, 1087647. https://doi.org/10.1155/2016/1087647.

  108. Casco-Robles, M. M.; Islam, M. R.; Inami, W.; Tanaka, H. V.; Kunahong, A.; Yasumuro, H.; Hanzawa, S.; Casco-Robles, R. M.; Toyama, F.; Maruo, F.; et al. Turning the Fate of Reprogramming Cells from Retinal Disorder to Regeneration by Pax6 in Newts. Sci Rep 2016, 6, 33761. https://doi.org/10.1038/srep33761.

  109. Polletta, L.; Vernucci, E.; Carnevale, I.; Arcangeli, T.; Rotili, D.; Palmerio, S.; Steegborn, C.; Nowak, T.; Schutkowski, M.; Pellegrini, L.; et al. SIRT5 Regulation of Ammonia-Induced Autophagy and Mitophagy. Autophagy 2015, 11 (2), 253–270. https://doi.org/10.1080/15548627.2015.1009778.

  110. Saladini, S.; Aventaggiato, M.; Barreca, F.; Morgante, E.; Sansone, L.; Russo, M. A.; Tafani, M. Metformin Impairs Glutamine Metabolism and Autophagy in Tumour Cells. Cells 2019, 8 (1). https://doi.org/10.3390/cells8010049.

  111. Holczer, M.; Besze, B.; Zámbó, V.; Csala, M.; Bánhegyi, G.; Kapuy, O. Epigallocatechin-3-Gallate (EGCG) Promotes Autophagy-Dependent Survival via Influencing the Balance of MTOR-AMPK Pathways upon Endoplasmic Reticulum Stress. Oxid Med Cell Longev 2018, 2018, 6721530. https://doi.org/10.1155/2018/6721530.

  112. Cortes, E.; Lachowski, D.; Robinson, B.; Sarper, M.; Teppo, J. S.; Thorpe, S. D.; Lieberthal, T. J.; Iwamoto, K.; Lee, D. A.; Okada-Hatakeyama, M.; et al. Tamoxifen Mechanically Reprograms the Tumor Microenvironment via HIF-1A and Reduces Cancer Cell Survival. EMBO Rep. 2019, 20 (1). https://doi.org/10.15252/embr.201846557.

  113. Rice, A. J.; Cortes, E.; Lachowski, D.; Cheung, B. C. H.; Karim, S. A.; Morton, J. P.; Del Río Hernández, A. Matrix Stiffness Induces Epithelial-Mesenchymal Transition and Promotes Chemoresistance in Pancreatic Cancer Cells. Oncogenesis 2017, 6 (7), e352. https://doi.org/10.1038/oncsis.2017.54.

  114. Cortes, E.; Sarper, M.; Robinson, B.; Lachowski, D.; Chronopoulos, A.; Thorpe, S. D.; Lee, D. A.; Del Río Hernández, A. E. GPER Is a Mechanoregulator of Pancreatic Stellate Cells and the Tumor Microenvironment. EMBO Rep. 2019, 20 (1). https://doi.org/10.15252/embr.201846556.

  115. Kwiatkowska-Borowczyk, E.; Czerwińska, P.; Mackiewicz, J.; Gryska, K.; Kazimierczak, U.; Tomela, K.; Przybyła, A.; Kozłowska, A. K.; Galus, Ł.; Kwinta, Ł.; et al. Whole Cell Melanoma Vaccine Genetically Modified to Stem Cells like Phenotype Generates Specific Immune Responses to ALDH1A1 and Long-Term Survival in Advanced Melanoma Patients. Oncoimmunology 2018, 7 (11), e1509821. https://doi.org/10.1080/2162402X.2018.1509821.

  116. Nagai, J.; Kitamura, Y.; Owada, K.; Yamashita, N.; Takei, K.; Goshima, Y.; Ohshima, T. Crmp4 Deletion Promotes Recovery from Spinal Cord Injury by Neuroprotection and Limited Scar Formation. Sci Rep 2015, 5, 8269. https://doi.org/10.1038/srep08269.

  117. Cravo, A. S.; Carter, E.; Erkan, M.; Harvey, E.; Furutani-Seiki, M.; Mrsny, R. Hippo Pathway Elements Co-Localize with Occludin: A Possible Sensor System in Pancreatic Epithelial Cells. Tissue Barriers 2015, 3 (3), e1037948. https://doi.org/10.1080/21688370.2015.1037948.

  118. Anwar, T.; Arellano-Garcia, C.; Ropa, J.; Chen, Y.-C.; Kim, H. S.; Yoon, E.; Grigsby, S.; Basrur, V.; Nesvizhskii, A. I.; Muntean, A.; et al. P38-Mediated Phosphorylation at T367 Induces EZH2 Cytoplasmic Localization to Promote Breast Cancer Metastasis. Nat Commun 2018, 9 (1), 2801. https://doi.org/10.1038/s41467-018-05078-8.

  119. Hurley, A.; Bassler, B. L. Asymmetric Regulation of Quorum-Sensing Receptors Drives Autoinducer-Specific Gene Expression Programs in Vibrio Cholerae. PLoS Genet. 2017, 13 (5), e1006826. https://doi.org/10.1371/journal.pgen.1006826.

  120. Perera, N. D.; Sheean, R. K.; Lau, C. L.; Shin, Y. S.; Beart, P. M.; Horne, M. K.; Turner, B. J. Rilmenidine Promotes MTOR-Independent Autophagy in the Mutant SOD1 Mouse Model of Amyotrophic Lateral Sclerosis without Slowing Disease Progression. Autophagy 2018, 14 (3), 534–551. https://doi.org/10.1080/15548627.2017.1385674.

  121. Foster, D. B.; Liu, T.; Rucker, J.; O’Meally, R. N.; Devine, L. R.; Cole, R. N.; O’Rourke, B. The Cardiac Acetyl-Lysine Proteome. PLoS ONE 2013, 8 (7), e67513. https://doi.org/10.1371/journal.pone.0067513.

  122. Jaini, R.; Loya, M. G.; Eng, C. Immunotherapeutic Target Expression on Breast Tumors Can Be Amplified by Hormone Receptor Antagonism: A Novel Strategy for Enhancing Efficacy of Targeted Immunotherapy. Oncotarget 2017, 8 (20), 32536–32549. https://doi.org/10.18632/oncotarget.15812.

  123. Das, A.; Monteiro, M.; Barai, A.; Kumar, S.; Sen, S. MMP Proteolytic Activity Regulates Cancer Invasiveness by Modulating Integrins. Sci Rep 2017, 7 (1), 14219. https://doi.org/10.1038/s41598-017-14340-w.

  124. Leonetti, E.; Gesualdi, L.; Scheri, K. C.; Dinicola, S.; Fattore, L.; Masiello, M. G.; Cucina, A.; Mancini, R.; Bizzarri, M.; Ricci, G.; et al. C-Src Recruitment Is Involved in c-MET-Mediated Malignant Behaviour of NT2D1 Non-Seminoma Cells. Int J Mol Sci 2019, 20 (2). https://doi.org/10.3390/ijms20020320.

  125. Yumoto, K.; Eber, M. R.; Wang, J.; Cackowski, F. C.; Decker, A. M.; Lee, E.; Nobre, A. R.; Aguirre-Ghiso, J. A.; Jung, Y.; Taichman, R. S. Axl Is Required for TGF-Β2-Induced Dormancy of Prostate Cancer Cells in the Bone Marrow. Sci Rep 2016, 6, 36520. https://doi.org/10.1038/srep36520.

  126. Heigwer, F.; Scheeder, C.; Miersch, T.; Schmitt, B.; Blass, C.; Pour Jamnani, M. V.; Boutros, M. Time-Resolved Mapping of Genetic Interactions to Model Rewiring of Signaling Pathways. Elife 2018, 7. https://doi.org/10.7554/eLife.40174.

  127. Fong, G.; Backman, L. J.; Andersson, G.; Scott, A.; Danielson, P. Human Tenocytes Are Stimulated to Proliferate by Acetylcholine through an EGFR Signalling Pathway. Cell Tissue Res. 2013, 351 (3), 465–475. https://doi.org/10.1007/s00441-012-1530-5.

  128. Fong, G.; Backman, L. J.; Alfredson, H.; Scott, A.; Danielson, P. The Effects of Substance P and Acetylcholine on Human Tenocyte Proliferation Converge Mechanistically via TGF-Β1. PLoS ONE 2017, 12 (3), e0174101. https://doi.org/10.1371/journal.pone.0174101.

  129. Spang, C.; Backman, L. J.; Le Roux, S.; Chen, J.; Danielson, P. Glutamate Signaling through the NMDA Receptor Reduces the Expression of Scleraxis in Plantaris Tendon Derived Cells. BMC Musculoskelet Disord 2017, 18 (1), 218. https://doi.org/10.1186/s12891-017-1575-4.

  130. Fracasso, B. de M.; Rangel, J. O.; Machado, A. G.; Curuja, F. S.; Lopes, A.; Olsen, V.; Clausell, N.; Biolo, A.; Rohde, L. E.; Andrades, M. Characterization of Advanced Glycation End Products and Their Receptor (RAGE) in an Animal Model of Myocardial Infarction. PLoS ONE 2019, 14 (1), e0209964. https://doi.org/10.1371/journal.pone.0209964.

  131. Butler-Cole, C.; Wagner, M. J.; Da Silva, M.; Brown, G. D.; Burke, R. D.; Upton, C. An Ectromelia Virus Profilin Homolog Interacts with Cellular Tropomyosin and Viral A-Type Inclusion Protein. Virol. J. 2007, 4, 76. https://doi.org/10.1186/1743-422X-4-76.

  132. Marcotulli, D.; Fattorini, G.; Bragina, L.; Perugini, J.; Conti, F. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex. Front Cell Neurosci 2017, 11, 389. https://doi.org/10.3389/fncel.2017.00389.

  133. de Melo, I. L. P.; de Oliveira e Silva, A. M.; de Carvalho, E. B. T.; Yoshime, L. T.; Sattler, J. A. G.; Mancini-Filho, J. Incorporation and Effects of Punicic Acid on Muscle and Adipose Tissues of Rats. Lipids Health Dis 2016, 15, 40. https://doi.org/10.1186/s12944-016-0214-7.

  134. Boamah, D.; Kikuchi, M.; Huy, N. T.; Okamoto, K.; Chen, H.; Ayi, I.; Boakye, D. A.; Bosompem, K. M.; Hirayama, K. Immunoproteomics Identification of Major IgE and IgG4 Reactive Schistosoma Japonicum Adult Worm Antigens Using Chronically Infected Human Plasma. Trop Med Health 2012, 40 (3), 89–102. https://doi.org/10.2149/tmh.2012-16.

  135. Falconar, A. K. I.; Romero-Vivas, C. M. E. A Simple, Inexpensive, Robust and Sensitive Dot-Blot Assay for Equal Detection of the Nonstructural-1 Glycoprotein of All Dengue Virus Serotypes. Virol. J. 2013, 10, 126. https://doi.org/10.1186/1743-422X-10-126.

  136. Wadman, R. I.; Stam, M.; Jansen, M. D.; van der Weegen, Y.; Wijngaarde, C. A.; Harschnitz, O.; Sodaar, P.; Braun, K. P. J.; Dooijes, D.; Lemmink, H. H.; et al. A Comparative Study of SMN Protein and MRNA in Blood and Fibroblasts in Patients with Spinal Muscular Atrophy and Healthy Controls. PLoS ONE 2016, 11 (11), e0167087. https://doi.org/10.1371/journal.pone.0167087.

  137. Zang, T.; Pottenplackel, L. P.; Handy, D. E.; Loscalzo, J.; Dai, S.; Deth, R. C.; Zhou, Z. S.; Ma, J. Comparison of Protein N-Homocysteinylation in Rat Plasma under Elevated Homocysteine Using a Specific Chemical Labeling Method. Molecules 2016, 21 (9). https://doi.org/10.3390/molecules21091195.

  138. Nielsen, F.; Tomás-Pejó, E.; Olsson, L.; Wallberg, O. Short-Term Adaptation during Propagation Improves the Performance of Xylose-Fermenting Saccharomyces Cerevisiae in Simultaneous Saccharification and Co-Fermentation. Biotechnol Biofuels 2015, 8, 219. https://doi.org/10.1186/s13068-015-0399-4.

  139. Sacristán, H. J.; Rodríguez, Y. E.; De Los Angeles Pereira, N.; López Greco, L. S.; Lovrich, G. A.; Fernández Gimenez, A. V. Energy Reserves Mobilization: Strategies of Three Decapod Species. PLoS ONE 2017, 12 (9), e0184060. https://doi.org/10.1371/journal.pone.0184060.

  140. Rabilloud, T. Optimization of the Cydex Blue Assay: A One-Step Colorimetric Protein Assay Using Cyclodextrins and Compatible with Detergents and Reducers. PLoS ONE 2018, 13 (4), e0195755. https://doi.org/10.1371/journal.pone.0195755.

  141. Sansone, C.; Galasso, C.; Orefice, I.; Nuzzo, G.; Luongo, E.; Cutignano, A.; Romano, G.; Brunet, C.; Fontana, A.; Esposito, F.; et al. The Green Microalga Tetraselmis Suecica Reduces Oxidative Stress and Induces Repairing Mechanisms in Human Cells. Sci Rep 2017, 7, 41215. https://doi.org/10.1038/srep41215.

  142. Sannino, F.; Sansone, C.; Galasso, C.; Kildgaard, S.; Tedesco, P.; Fani, R.; Marino, G.; de Pascale, D.; Ianora, A.; Parrilli, E.; et al. Pseudoalteromonas Haloplanktis TAC125 Produces 4-Hydroxybenzoic Acid That Induces Pyroptosis in Human A459 Lung Adenocarcinoma Cells. Sci Rep 2018, 8 (1), 1190. https://doi.org/10.1038/s41598-018-19536-2.

  143. Sacristán, H. J.; Ansaldo, M.; Franco-Tadic, L. M.; Fernández Gimenez, A. V.; López Greco, L. S. Long-Term Starvation and Posterior Feeding Effects on Biochemical and Physiological Responses of Midgut Gland of Cherax Quadricarinatus Juveniles (Parastacidae). PLoS ONE 2016, 11 (3), e0150854. https://doi.org/10.1371/journal.pone.0150854.

  144. Giménez, M. J.; Real, A.; García-Molina, M. D.; Sousa, C.; Barro, F. Characterization of Celiac Disease Related Oat Proteins: Bases for the Development of High Quality Oat Varieties Suitable for Celiac Patients. Sci Rep 2017, 7, 42588. https://doi.org/10.1038/srep42588.

  145. dos Santos, N. V.; Matias, A. C.; Higa, G. S. V.; Kihara, A. H.; Cerchiaro, G. Copper Uptake in Mammary Epithelial Cells Activates Cyclins and Triggers Antioxidant Response. Oxid Med Cell Longev 2015, 2015, 162876. https://doi.org/10.1155/2015/162876.

  146. Liguori, T. T. A.; Liguori, G. R.; Moreira, L. F. P.; Harmsen, M. C. Fibroblast Growth Factor-2, but Not the Adipose Tissue-Derived Stromal Cells Secretome, Inhibits TGF-Β1-Induced Differentiation of Human Cardiac Fibroblasts into Myofibroblasts. Sci Rep 2018, 8 (1), 16633. https://doi.org/10.1038/s41598-018-34747-3.

  147. Hempel, C.; Wang, C. W.; Kurtzhals, J. A. L.; Staalsø, T. Binding of Plasmodium Falciparum to CD36 Can Be Shielded by the Glycocalyx. Malar. J. 2017, 16 (1), 193. https://doi.org/10.1186/s12936-017-1844-6.

  148. Ivanidze, J.; Hoffmann, R.; Lochmüller, H.; Engel, A. G.; Hohlfeld, R.; Dornmair, K. Inclusion Body Myositis: Laser Microdissection Reveals Differential up-Regulation of IFN-γ Signaling Cascade in Attacked versus Nonattacked Myofibers. Am. J. Pathol. 2011, 179 (3), 1347–1359. https://doi.org/10.1016/j.ajpath.2011.05.055.

  149. Honjoh, T.; Ji, Z.-G.; Yokoyama, Y.; Sumiyoshi, A.; Shibuya, Y.; Matsuzaka, Y.; Kawashima, R.; Mushiake, H.; Ishizuka, T.; Yawo, H. Optogenetic Patterning of Whisker-Barrel Cortical System in Transgenic Rat Expressing Channelrhodopsin-2. PLoS ONE 2014, 9 (4), e93706. https://doi.org/10.1371/journal.pone.0093706.

  150. Chang, Z.-Y.; Yeh, M.-K.; Chiang, C.-H.; Chen, Y.-H.; Lu, D.-W. Erythropoietin Protects Adult Retinal Ganglion Cells against NMDA-, Trophic Factor Withdrawal-, and TNF-α-Induced Damage. PLoS ONE 2013, 8 (1), e55291. https://doi.org/10.1371/journal.pone.0055291.

  151. Ji, Z.-G.; Ito, S.; Honjoh, T.; Ohta, H.; Ishizuka, T.; Fukazawa, Y.; Yawo, H. Light-Evoked Somatosensory Perception of Transgenic Rats That Express Channelrhodopsin-2 in Dorsal Root Ganglion Cells. PLoS ONE 2012, 7 (3), e32699. https://doi.org/10.1371/journal.pone.0032699.

  152. Yabe, D.; Watanabe, K.; Sugawara, K.; Kuwata, H.; Kitamoto, Y.; Sugizaki, K.; Fujiwara, S.; Hishizawa, M.; Hyo, T.; Kuwabara, K.; et al. Comparison of Incretin Immunoassays with or without Plasma Extraction: Incretin Secretion in Japanese Patients with Type 2 Diabetes. J Diabetes Investig 2012, 3 (1), 70–79. https://doi.org/10.1111/j.2040-1124.2011.00141.x.

  153. Tsuji, S.; Yamashita, M.; Kageyama, T.; Ohtsu, T.; Suzuki, K.; Kato, S.; Akitomi, J.; Furuichi, M.; Waga, I. Hishot Display--a New Combinatorial Display for Obtaining Target-Recognizing Peptides. PLoS ONE 2013, 8 (12), e83108. https://doi.org/10.1371/journal.pone.0083108.

  154. Stritt, S.; Nurden, P.; Favier, R.; Favier, M.; Ferioli, S.; Gotru, S. K.; van Eeuwijk, J. M. M.; Schulze, H.; Nurden, A. T.; Lambert, M. P.; et al. Defects in TRPM7 Channel Function Deregulate Thrombopoiesis through Altered Cellular Mg(2+) Homeostasis and Cytoskeletal Architecture. Nat Commun 2016, 7, 11097. https://doi.org/10.1038/ncomms11097.

  155. Karki, R.; Man, S. M.; Malireddi, R. K. S.; Kesavardhana, S.; Zhu, Q.; Burton, A. R.; Sharma, B. R.; Qi, X.; Pelletier, S.; Vogel, P.; et al. NLRC3 Is an Inhibitory Sensor of PI3K-MTOR Pathways in Cancer. Nature 2016, 540 (7634), 583–587. https://doi.org/10.1038/nature20597.

  156. Gregg, T.; Poudel, C.; Schmidt, B. A.; Dhillon, R. S.; Sdao, S. M.; Truchan, N. A.; Baar, E. L.; Fernandez, L. A.; Denu, J. M.; Eliceiri, K. W.; et al. Pancreatic β-Cells From Mice Offset Age-Associated Mitochondrial Deficiency With Reduced KATP Channel Activity. Diabetes 2016, 65 (9), 2700–2710. https://doi.org/10.2337/db16-0432.