Cell Lines for Virus Culture and Vaccine Production

Primary, human diploid, and continuous culture cell lines for virus isolation and proliferation and virus-based vaccines

The advent of cell culture techniques has fundamentally changed virus isolation and proliferation in the lab setting. Cell-based production systems offer a convenient and cost-effective approach for the isolation, detection, and identification of viruses. Greater process control contributes to a more reliable and well-characterized product, with faster and shorter production cycles than that of animal- and egg-based production systems.

Cell-based production systems for virus culture and vaccine production are important for:

  • Virus detection/identification: Cell cultures provide a suitable environment for detection and identification of many human viral pathogens, affording important microscopic examinations for evidence of viral proliferation. Accurate identification of virus is important to ensure timely and appropriate treatments, and can facilitate the detection of mixed viral infections.
  • Host-pathogen interaction research: Innovations in cell biology have allowed deeper and more complex insights into host-pathogen interactions for the study of pathogenesis. In vitro cell culture systems can facilitate experimental access for investigation of the mode and etiological factors of viral infection.
  • Viral structure and replication: Genetic material and replication methods vary considerably among different types of viruses. Cell culture systems can facilitate virus growth and elucidate development and interactions with host cells at every stage of replication.
  • Vaccine production: Cell-based vaccine production systems offer a flexible and cost-effective approach for meeting vaccine output needs. Manufacturers can supply vaccines more quickly and in greater quantities to alleviate vaccine supply shortages during outbreaks when traditional egg-based production systems may fall short. Virus-based vaccines produced in mammalian cells may also offer better protection against viral infections, as they more closely replicate viruses in circulation than vaccines produced in chicken eggs.

Cell culture systems used for virus propagation may employ primary cells, semi-continuous cell lines, and continuous cell lines:

 

Primary cell lines Human diploid cells
(Semi-continuous cell lines)
Continuous cell lines
  • Derived from animal tissues. May be passaged once or twice to generate secondary cultures, but grow only for limited time. 
  • Secondary cultures (subculture of the primary culture) are similar to primary cultures in both morphology and viral susceptibility  
  • Used both for virus isolation (clinical samples) and vaccine production      
  • Derived from fetal tissues, and can be subcultured for ~50 passages 
  • Similar to primary cultures in viral susceptibility  
  • Used for vaccine production and isolation of fastidious viruses            
  • Cancer or other immortalized cells, which multiply rapidly and may be cultured indefinitely  
  • May become heteroploid on serial passage  
  • Narrower range of viral susceptibility than primary or diploid cultures  
  • Easy to adapt viruses for propagation  
  • Used for production of serologic antigens, and a source of cells for neutralizing antibody assays  

 

Cell Line Origin Infectious Agents
A549   human lung carcinoma Adenovirus,1 HSV,2 influenza,3 measles,4 mumps,4 parainfluenza,5 poliovirus,6 respiratory syncytial virus (RSV),6 rotavirus,7 Varicella zoster virus (VZV),8 metapneumovirus (MPV)9
BHK 21 (clone 13) Syrian hamster kidney Human adenovirus D,10 reovirus 3,11 vesicular stomatitis virus (Indiana strain),12 Dengue,13 influenza,13 rabies,13 foot and mouth,14 rubella,15
CV-1   African green monkey kidney fibroblast RSV,16, measles,16, HSV,17, VZV,18
HeLa human cervix adenocarcinoma   Poliovirus type I,19 adenovirus type 3,20 CMV,21 echovirus,22 HSV23 poliovirus,24 rhinovirus,25 vesicular stomatitis (Indiana Strain) virus,26 VZV27
LLCMK2 Rhesus monkey kidney Poliovirus type 1,17 enterovirus,28 rhinovirus,29 poxvirus groups30
McCoy Mouse fibroblast HSV32
MDCK   Madin-Darby canine kidney Influenza A,31 influenza B, some types of adenovirus,33 reoviruses34
MRC-5 human fetal lung CMV,35 HSV,36 adenovirus,37 influenza,38 mumps,39 echovirus,40 poliovirus,41 rhinovirus,42 RSV,43 VZV,27
NCI-H292   Human lung, mucoepidermoid carcinoma Vaccinia virus,44 HSV,45 adenovirus,46 measles virus,47 reoviruses,48 BK polyomavirus,49 RSV,50 some strains of influenza A,51 most enteroviruses,52 and rhinoviruses53
Vero African green monkey kidney Coxsackie B,54 HSV,55 measles,56 mumps,57 poliovirus type 3,58 rotavirus,59 rubella,60
Vero76 African green monkey kidney Coxsackie B,61 HSV,62 West Nile virus,63
Wi 38 Human fetal lung Adenovirus,64 CMV,65 echovirus,66 HSV,67 mumps,68 influenza,69 rhinovirus,70 RSV,71 VZV,72

 

References

  1. Hodzic J, Sie D, Vermeulen A, van Beusechem V. 2017. Functional screening identifies human miRNAs that modulate adenovirus propagation in prostate cancer cells. Hum. 28(9):766-780.
  2. Wang Y, Zhou B, Lu J, Chen Q, Ti H, et al. 2017. Inhibition of influenza virus via a sesquiterpene fraction isolated from Laggera pterodonta by targeting the NF-κB and p38 pathways. BMC Complement Altern Med. 17(1):25.
  3. Holzberg, Magdalena, Boergeling Y, Schräder T, Ludwig S, Ehrhardt C. 2017. Vemurafenib limits influenza a virus propagation by targeting multiple signaling pathways. Front Microbiol. 8:2426.
  4. Franz S, Rennert P, Woznik M, Grützke J, Lüdde A, et al. 2017. Mumps Virus SH protein inhibits NF-κB activation by interacting with TNFR1, IL-1R1, and TLR3 complexes. J Virol. 91(18):e01037-1.
  5. Dirr L, El-Deeb IM, Chavas LMG, Guillon P, Itzstein MV. 2017. The impact of the butterfly effect on human parainfluenza virus haemagglutinin-neuraminidase inhibitor design. Sci Rep. 7(1):4507.
  6. McCaskill JL, Ressel S, Alber A, Redford J, Power UF, et al. 2017. Broad-spectrum inhibition of respiratory virus infection by microRNA mimics targeting p38 MAPK signaling. Mol Ther Nucleic Acids 7:256-266.
  7. Mackowiak M, Leifels M, Hamza IA, Jurzik L, Wingender J. 2018. Distribution of Escherichia coli, coliphages and enteric viruses in water, epilithic biofilms and sediments of an urban river in Germany. Sci Total Environ. 626:650-659.
  8. Aiba N, Shiraki A, Yajima M, Oyama Y, Yoshida Y, et al. 2017. Interaction of immunoglobulin with cytomegalovirus-infected cells. Viral Immunol. 30(7):500-507.
  9. Li Y, Lund C, Nervik I, Loevenich S, Døllne H, et al. 2018. Characterization of signaling pathways regulating the expression of pro-inflammatory long form thymic stromal lymphopoietin upon human metapneumovirus infection. Sci Rep. 8(1):883.
  10. Okeke M, Okoli A, Diaz D, Offor C, Oludotun T, et al. 2017. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses. 9(11):318.
  11. Pudupakam RS, Raghunath S, Pudupakam M, Daggupati S. 2017. Genetic characterization of the non-structural protein-3 gene of bluetongue virus serotype-2 isolate from India. Vet World. 10(3):348-352.
  12. Kleinlützum D, Hanauer J, Muik A, Hanschmann K, Kays S, et al. 2017. Enhancing the oncolytic activity of CD133-targeted measles virus: receptor extension or chimerism with vesicular stomatitis virus are most effective. Front Oncol. 7:127.
  13. Nikolay A, Castilho LR, Reichl U, Genzel Y. 2018. Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells. Vaccine. 36(22):3140-3145.
  14. Kamal SA, Hassan RAE. 2017. Advanced virological and clinicopathological studies on cattle suffering from foot and mouth disease virus. J Immun. 1(1):33.
  15. Prescott J, Feldmann H, Safronetz D. 2017. Amending Koch's postulates for viral disease: when “growth in pure culture” leads to a loss of virulence. Antivir Res. 137:1-5.
  16. Hampton CM, Strauss JD, Ke Z, Dillard RS, Hammonds JE, et al. 2017. Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat Prot. 12(1):150-167.
  17. Dotti S, Lombardo T, Villa R, Caccimali A, Zanotti C, et al. Transformation and tumorigenicity testing of simian cell lines and evaluation of poliovirus replication. PloS one. 12(1):e0169391.
  18. Yang K, Dang X, Baines JD. 2017. A domain of Herpes simplex virus pUL33 required to release monomeric viral genomes from cleaved concatameric DNA. J Virol. 91(20): e00854-17.
  19. Gromeier M, Nair SK. 2018. Recombinant poliovirus for cancer immunotherapy. Annu Rev Med. 69:289-299.
  20. Weigert M, Binks A, Dowson S, Leung EYL, Athineos D, et al. 2017. RIPK3 promotes adenovirus type 5 activity. Cell Death Dis. 8(12):3206.
  21. Khadivjam B, Stegen C, Hogue-Racine MA, El Bilali N, Döhner K, et al. 2017. The ATP-dependent RNA helicase DDX3X modulates herpes simplex virus type 1 gene expression. J Virol. 91(8):e02411-16 .
  22. Aguilera ER, Erickson AK, Jesudhasan PR, Robinson CM, Pfeiffer JK. 2017. Plaques formed by mutagenized viral populations have elevated coinfection frequencies. mBio. 8(2):e02020-16.
  23. Ibáñez FJ, Farías MA, Retamal-Díaz A, Espinoza JA, Kalergis AM, et al. 2017. Pharmacological induction of heme oxygenase-1 impairs nuclear accumulation of herpes simplex virus capsids upon infection. Front Microbiol. 8:2108.
  24. Acevedo A, Woodman A, Jamie A, Yeh M, Evans D, et al. 2018. Genetic recombination of poliovirus facilitates subversion of host barriers to infection. bioRxiv. 273060.
  25. Ganjian H, Zietz C, Mechtcheriakova D, Blaas D, Fuchs R. 2017. ICAM-1 binding rhinoviruses enter HeLa cells via multiple pathways and travel to distinct intracellular compartments for uncoating. Viruses 9(4):68.
  26. Pan W, Song D, He W, Lu H, Lan Y, et al. 2017. EIF3i affects vesicular stomatitis virus growth by interacting with matrix protein. Vet Microbiol. 212:59-66.
  27. Sadaoka T, Schwartz CL, Rajbhandari L, Venkatesan A, Cohen JI. 2018. Human embryonic stem cell-derived neurons are highly permissive for varicella-zoster virus lytic infection. J Virol. 92(1):e01108-17.
  28. Betancourt WQ, Abd-Elmaksoud S, Gerba CP. 2018. Efficiency of reovirus concentration from water with positively charged filters. Food Environ Virol. 10(2):1-3.
  29. Sato K, Watanabe O, Ohmiya S, Chiba F, Suzuki A, et al. 2017. Efficient isolation of human metapneumovirus using MNT‐1, a human malignant melanoma cell line with early and distinct cytopathic effects. Microbiol Immunol. 61(11):497-506.
  30. Parker S, Crump R, Hartzler H, Buller RM. 2017. Evaluation of Taterapox virus in small animals. Viruses. 9(8):203.
  31. Petyaev IM, Zigangirova NA, Morgunova EY, Kyle NH, Fedina ED, et al. resveratrol inhibits propagation of Chlamydia trachomatis in McCoy cells. Biomed Res Int. 2017:4064071
  32. Danaher RJ, Fouts DE, Chan AP, Choi Y, DePew J, et al. 2017. HSV-1 clinical isolates with unique in vivo and in vitro phenotypes and insight into genomic differences. J Neurovirol. 23(2):171-185.
  33. Glatthaar-Saalmüller B, Mair KH, Saalmüller A. 2017. Antiviral activity of aspirin against RNA viruses of the respiratory tract—an in vitro study. Influenza Other Respir Viruses. 11(1):85-92.
  34. Mahmud RS, Mostafa A, Müller C, Kanrai P, Ulyanova V, et al. 2017. Ribonuclease from bacillus acts as an antiviral agent against negative-and positive-sense single stranded human respiratory RNA viruses. Biomed Res Int. 2017: 5279065
  35. Hobom U, Brune W, Messerle M, Hahn G, Koszinowski UH. 2000. Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol. 74(17):7720-7729.
  36. Didcock L, Young DF, Goodbourn S, Randall RE. 1999. Sendai virus and simian virus 5 block activation of interferon-responsive genes: importance for virus pathogenesis. J Virol. 73(4):3125-3133.
  37. Gugala Z, Olmsted-Davis EA, Gannon FH, Lindsey RW, Davis AR. 2003. Osteoinduction by ex vivo adenovirus-mediated BMP2 delivery is independent of cell type. Gene Ther. 10(16):1289-1296.
  38. Cheng PW, Ng LT, Chiang LC, Lin CC. 2006. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol. 33(7):612-616.
  39. Wilson MR, Suan D, Duggins A, Schubert RD, Khan LM, et al. 2017. A novel cause of chronic viral meningoencephalitis: Cache Valley virus. Ann Neurol. 82(1):105-114.
  40. Atieh T, El Ayoubi MD, Aubry F, Priet S, de Lamballerie X, et al. 2018. Haiku: New paradigm for the reverse genetics of emerging RNA viruses. PloS one. 13(2):e0193069.
  41. Lewandowska DW, Zagordi O, Geissberger FD, Kufner V, Schmutz S, et al. 2017. Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples. Microbiome. 5(1):94.
  42. Jenny RA1, Hirst C1, Lim SM1, Goulburn AL1, Micallef SJ, et al. 2015. Productive infection of human embryonic stem cell‐derived nkx2. 1+ respiratory progenitors with human rhinovirus. Stem Cells Transll Med. 4(6):603-614.
  43. Jerome KR. 2016. In: Jerome KR, editor. Lennette's laboratory diagnosis of viral infections. Boca Raton (FL): CRC Press.
  44. Pereira L. 2018. In: Pereira L, editor. Therapeutic and nutritional uses of algae. Boca Raton (FL): CRC Press.
  45. Mu J, Hirayama M, Sato Y, Morimoto K, Hori K. 2017. A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Mar Drugs. 15(8):E255.
  46. Costello MJ, Smernoff NT, Yungbluth M. 1993. Laboratory diagnosis of viral respiratory tract infections. Lab Med. 24(3):150-157.
  47. Currier MG, Lee S, Stobart CC, Hotard AL, Villenave R, et al. 2016. EGFR interacts with the fusion protein of respiratory syncytial virus strain 2-20 and mediates infection and mucin expression. PLoS Pathog. 12(5):e1005622.
  48. Tan B, Wu LJ, Yang XL, Li B, Zhang W, et al. 2016. Isolation and characterization of adenoviruses infecting endangered golden snub-nosed monkeys (Rhinopithecus roxellana). Virol J. 13(1):190.
  49. Yang T, Li S, Zhang X, Pang X, Lin Q, et al. 2015. Resveratrol, sirtuins, and viruses. Rev Med Virol. 25(6):431-445.
  50. Gagliardi TB, Criado MF, Proença-Módena JL, Saranzo AM, Iwamoto MA, et al. 2017. Syncytia induction by clinical isolates of human respiratory syncytial virus a. Intervirology. 60(1-2):56-60.
  51. Amatore D, Sgarbanti R, Aquilano K, Baldelli S, Limongi D, et al. 2015. Influenza virus replication in lung epithelial cells depends on redox‐sensitive pathways activated by NOX4‐derived ROS. Cellular microbiology. 17(1):131-145.
  52. Castells E, George VG, Hierholzer JC. 1990. NCI-H292 as an alternative cell line for the isolation and propagation of the human paramyxoviruses. Arch Virol. 115(3-4):277-288.
  53. Bianco A, Sethi SK, Allen JT, Knight RA, Spiteri MA. 1998. Th2 cytokines exert a dominant influence on epithelial cell expression of the major group human rhinovirus receptor, ICAM-1. Eur Respir J. 12(3):619-626.
  54. Mall AS, Habte H, Mthembu Y, Peacocke J, de Beer C. 2017. Mucus and mucins: do they have a role in the inhibition of the human immunodeficiency virus? Virol J. 14(1):192.
  55. Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L, et al. 1977. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Nat Acad Sci USA. 74(12):5716-5720.
  56. Rima BK, Davidson WB, Martin SJ. 2017. The role of defective interfering particles in persistent infection of Vero cells by measles virus. J General Virol. 35(1):89-97.
  57. Gouma S, Ten Hulscher HI, Schurink-van 't Klooster TM, de Melker HE, Boland GJ, et al. 2016. Mumps-specific cross-neutralization by MMR vaccine-induced antibodies predicts protection against mumps virus infection. Vaccine. 34(35): 4166-4171.
  58. Sanders BP, Oakes Ide L, van Hoek V, Liu Y, Marissen W, et al. 2015. Production of high titer attenuated poliovirus strains on the serum-free PER.C6(®) cell culture platform for the generation of safe and affordable next generation IPV. Vaccine. 33(48):6611-6616.
  59. Kang JY, Lee DK, Ha NJ, Shin HS. 2015. Antiviral effects of Lactobacillus ruminis SPM0211 and Bifidobacterium longum SPM1205 and SPM1206 on rotavirus-infected Caco-2 cells and a neonatal mouse model. J Microbiol. 53(11):796-803.
  60. Mangala Prasad V, Klose T, Rossmann MG. 2017. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus. PLoS Pathog. 13(6):e1006377.
  61. Venturi G, Zammarchi L, Fortuna C, Remoli ME, Benedetti E, et al. 2016. An autochthonous case of Zika due to possible sexual transmission, Florence, Italy, 2014. Euro Surveil. 21(8):30148.
  62. Criscuolo E, Clementia N, Manciniab N, Burionia R, Miduri M, et al. 2018. Synergy evaluation of anti-Herpes Simplex Virus type 1 and 2 compounds acting on different steps of virus life cycle. Antivir Res. 151:71-77.
  63. Richard AS, Shim BS, Kwon YC, Zhang R, Otsuka Y, et al. 2017. AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci USA.114(8):2024-2029.
  64. Kim YY, Jee HJ, Um JH, Kim YM, Bae SS, et al. 2017. Cooperation between p21 and Akt is required for p53‐dependent cellular senescence. Aging Cell. 16(5):1094-1103.
  65. Plotkin S. 2015. The history of vaccination against cytomegalovirus. Med Microbiol Immunol. 204(3): 247-254.
  66. Mintz L, Drew WL. 1980. Relation of culture site to the recovery of nonpolio enteroviruses. Am J Clin Patho. 74(3):324-326.
  67. Baker DA, Kleger B, Plotkin SA. 2016. A comparison of herpes simplex virus (HSV) typing using direct fluorescent antibody (DFA) and chick embryo plaque (CEP) assays. Lab Med. 10(9): 559-561.
  68. Perelygina L, Plotkin S, Russo P, Hautala T, Bonilla F, et al. 2016. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. J Allergy Clin Immunol .138(5):1436-1439.e11.
  69. Sousa FH, Casanova V, Findlay F, Stevens C, Svoboda P, et al. 2017. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides. 95:76-83.
  70. Shariff S, Shelfoon C, Holden NS, Traves SL, Wiehler S, et al. 2017. Human rhinovirus infection of epithelial cells modulates airway smooth muscle migration. Am J Respir Cell Mol Biol. 56(6):796-803.
  71. Corry J, Johnson SM, Cornwell J, Peeples ME. 2016. Preventing cleavage of the respiratory syncytial virus attachment protein in vero cells rescues the infectivity of progeny virus for primary human airway cultures. J Virol. 90(3):1311-1320.
  72. Zahoor MA, Mohsin K, Qureshi R, Nax A, Shahid M. 2016. Cell culture-based viral vaccines: current status and future prospects. Future Virol. 11(7):549-562.