Saltar al contenido
Merck

Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol.

Bioresource technology (2015-03-26)
Hye-Jin Lee, Soo-Jung Kim, Jeong-Jun Yoon, Kyoung Heon Kim, Jin-Ho Seo, Yong-Cheol Park
RESUMEN

The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
D-(+)-Galactosa, ≥99% (HPLC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
D-(+)-Galactosa, ≥99% (HPLC)
Sigma-Aldrich
D-(+)-Galactosa, ≥98% (HPLC)
Sigma-Aldrich
D-(+)-Galactosa, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
D-(+)-Galactosa, meets analytical specification of Ph. Eur., BP