Saltar al contenido
Merck

Ras transformation results in cleavage of reticulon protein Nogo-B that is associated with impairment of IFN response.

Cell cycle (Georgetown, Tex.) (2015-05-07)
Dae-Gyun Ahn, Tanveer Sharif, Kenneth Chisholm, Devanand M Pinto, Shashi A Gujar, Patrick W K Lee
RESUMEN

Dysregulation of Ras signaling is the major cause of various cancers. Aberrant Ras signaling, however, provides a favorable environment for many viruses, making them suitable candidates as cancer-killing therapeutic agents. Susceptibility of cancer cells to such viruses is mainly due to impaired type I interferon (IFN) response, often as a result of activated Ras/ERK signaling in these cells. In this study, we searched for cellular factors modulated by Ras signaling and their potential involvement in promoting viral oncolysis. We found that upon Ras transformation of NIH-3T3 cells, the N-terminus of Nogo-B (reticulon 4) was proteolytically cleaved. Interestingly, Nogo knockdown (KD) in non-transformed and Ras-transformed cells both enhanced virus-induced IFN response, suggesting that both cleaved and uncleaved Nogo can suppress IFN response. However, pharmacological blockade of Nogo cleavage in Ras-transformed cells significantly enhanced virus-induced IFN response, suggesting that cleaved Nogo contributes to enhanced IFN suppression in these cells. We further showed that IFN suppression associated with Ras-induced Nogo-B cleavage was distinct from but synergistic with that associated with an activated Ras/ERK pathway. Our study therefore reveals an important and novel role of Nogo-B and its cleavage in the suppression of anti-viral immune responses by oncogenic Ras transformation.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Sacarosa, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sacarosa, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Fluoruro de fenilmetansulfonilo, ≥98.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sacarosa, ACS reagent
Sigma-Aldrich
Fluoruro de fenilmetansulfonilo, ≥99.0% (T)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sacarosa, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Sacarosa, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Sacarosa, meets USP testing specifications
Sigma-Aldrich
MISSION® esiRNA, targeting human RTN4
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Rtn4