Skip to Content
Merck
  • Mass spectrometry-based metabolite profiling in the mouse liver following exposure to ultraviolet B radiation.

Mass spectrometry-based metabolite profiling in the mouse liver following exposure to ultraviolet B radiation.

PloS one (2014-10-03)
Hye Min Park, Jong Cheol Shon, Mee Youn Lee, Kwang-Hyeon Liu, Jeong Kee Kim, Sang Jun Lee, Choong Hwan Lee
ABSTRACT

Although many studies have been performed on the effects of ultraviolet (UV) radiation on the skin, only a limited number of reports have investigated these effects on non-skin tissue. This study aimed to describe the metabolite changes in the liver of hairless mice following chronic exposure to UVB radiation. We did not observe significant macroscopic changes or alterations in hepatic cholesterol and triglyceride levels in the liver of UVB-irradiated mice, compared with those for normal mice. In this study, we detected hepatic metabolite changes by UVB exposure and identified several amino acids, fatty acids, nucleosides, carbohydrates, phospholipids, lysophospholipids, and taurine-conjugated cholic acids as candidate biomarkers in response to UVB radiation in the mouse liver by using various mass spectrometry (MS)-based metabolite profiling including ultra-performance liquid chromatography-quadrupole time-of-flight (TOF)-MS, gas chromatography-TOF-MS and nanomate LTQ-MS. Glutamine exhibited the most dramatic change with a 5-fold increase in quantity. The results from altering several types of metabolites suggest that chronic UVB irradiation may impact significantly on major hepatic metabolism processes, despite the fact that the liver is not directly exposed to UVB radiation. MS-based metabolomic approach for determining regulatory hepatic metabolites following UV irradiation will provide a better understanding of the relationship between internal organs and UV light.

MATERIALS
Product Number
Brand
Product Description

Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
Methoxyamine hydrochloride, 98%
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Cholesterol, tested according to Ph. Eur.
Supelco
N-Methyl-bis(trifluoroacetamide), derivatization grade (GC derivatization), LiChropur, ≥99.0% (GC)
Supelco
N-Methyl-bis(trifluoroacetamide), derivatization grade (GC derivatization), LiChropur, ≥97.0% (GC)
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Supelco
Cholesterol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
Acetic anhydride, Arxada quality, ≥99.5% (GC)
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetic anhydride, 99.5%
Sigma-Aldrich
Acetic anhydride, ReagentPlus®, ≥99%
Sigma-Aldrich
Formic acid solution, BioUltra, 1.0 M in H2O