Skip to Content
Merck
  • Unraveling the interplay of backbone rigidity and electron rich side-chains on electron transfer in peptides: the realization of tunable molecular wires.

Unraveling the interplay of backbone rigidity and electron rich side-chains on electron transfer in peptides: the realization of tunable molecular wires.

Journal of the American Chemical Society (2014-08-15)
John R Horsley, Jingxian Yu, Katherine E Moore, Joe G Shapter, Andrew D Abell
ABSTRACT

Electrochemical studies are reported on a series of peptides constrained into either a 310-helix (1-6) or β-strand (7-9) conformation, with variable numbers of electron rich alkene containing side chains. Peptides (1 and 2) and (7 and 8) are further constrained into these geometries with a suitable side chain tether introduced by ring closing metathesis (RCM). Peptides 1, 4 and 5, each containing a single alkene side chain reveal a direct link between backbone rigidity and electron transfer, in isolation from any effects due to the electronic properties of the electron rich side-chains. Further studies on the linear peptides 3-6 confirm the ability of the alkene to facilitate electron transfer through the peptide. A comparison of the electrochemical data for the unsaturated tethered peptides (1 and 7) and saturated tethered peptides (2 and 8) reveals an interplay between backbone rigidity and effects arising from the electron rich alkene side-chains on electron transfer. Theoretical calculations on β-strand models analogous to 7, 8 and 9 provide further insights into the relative roles of backbone rigidity and electron rich side-chains on intramolecular electron transfer. Furthermore, electron population analysis confirms the role of the alkene as a "stepping stone" for electron transfer. These findings provide a new approach for fine-tuning the electronic properties of peptides by controlling backbone rigidity, and through the inclusion of electron rich side-chains. This allows for manipulation of energy barriers and hence conductance in peptides, a crucial step in the design and fabrication of molecular-based electronic devices.

MATERIALS
Product Number
Brand
Product Description

Supelco
2-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
N,N-Diisopropylethylamine, ReagentPlus®, ≥99%
Sigma-Aldrich
DCC, 99%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
DCC, 1.0 M in methylene chloride
Sigma-Aldrich
N,N-Diisopropylethylamine, purified by redistillation, 99.5%
Sigma-Aldrich
2-Chlorotrityl chloride, ≥97.0% (AT)
Sigma-Aldrich
DCC, puriss., ≥99.0% (GC)
Supelco
Acetonitrile, analytical standard
Supelco
2-Propanol, analytical standard
Sigma-Aldrich
Piperidine solution, suitable for peptide synthesis, 20% in DMF
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
Trifluoroacetic acid, analytical standard
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Trifluoroacetic acid, ≥99%, for protein sequencing
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
N,N-Diisopropylethylamine, 99.5%, biotech. grade
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Trifluoroacetic acid, suitable for HPLC, ≥99.0%