Skip to Content
Merck
  • STAT3 acts through pre-existing nucleosome-depleted regions bound by FOS during an epigenetic switch linking inflammation to cancer.

STAT3 acts through pre-existing nucleosome-depleted regions bound by FOS during an epigenetic switch linking inflammation to cancer.

Epigenetics & chromatin (2015-03-19)
Joseph D Fleming, Paul G Giresi, Marianne Lindahl-Allen, Elsa B Krall, Jason D Lieb, Kevin Struhl
ABSTRACT

Transient induction of the Src oncoprotein in a non-transformed breast cell line can initiate an epigenetic switch to a cancer cell via a positive feedback loop that involves activation of the signal transducer and activator of transcription 3 protein (STAT3) and NF-κB transcription factors. We show that during the transformation process, nucleosome-depleted regions (defined by formaldehyde-assisted isolation of regulatory elements (FAIRE)) are largely unchanged and that both before and during transformation, STAT3 binds almost exclusively to previously open chromatin regions. Roughly, a third of the transformation-inducible genes require STAT3 for the induction. STAT3 and NF-κB appear to drive the regulation of different gene sets during the transformation process. Interestingly, STAT3 directly regulates the expression of NFKB1, which encodes a subunit of NF-κB, and IL6, a cytokine that stimulates STAT3 activity. Lastly, many STAT3 binding sites are also bound by FOS and the expression of several AP-1 factors is altered during transformation in a STAT3-dependent manner, suggesting that STAT3 may cooperate with AP-1 proteins. These observations uncover additional complexities to the inflammatory feedback loop that are likely to contribute to the epigenetic switch. In addition, gene expression changes during transformation, whether driven by pre-existing or induced transcription factors, occur largely through pre-existing nucleosome-depleted regions.

MATERIALS
Product Number
Brand
Product Description

USP
Phenol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Isopropyl alcohol, meets USP testing specifications
Sigma-Aldrich
2-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Propanol, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Phenol, natural, 97%, FG
USP
Levothyroxine, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Propanol, puriss. p.a., ACS reagent, ≥99.8% (GC)
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.5%
Sigma-Aldrich
2-Propanol, suitable for HPLC, 99.9%
USP
2-Propanol, United States Pharmacopeia (USP) Reference Standard
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Phenol, BioUltra, Molecular Biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Phenol solution, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, Molecular Biology
Sigma-Aldrich
Phenol solution, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, BioReagent, Molecular Biology
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Liquified Phenol, ≥89.0%
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Phenol:Chloroform:Isoamyl Alcohol 25:24:1, Saturated with 10mM Tris, pH 8.0, 1mM EDTA, Molecular Biology
Sigma-Aldrich
Sucrose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ACS reagent