Skip to Content
Merck
  • Study on the phase I metabolism of novel synthetic cannabinoids, APICA and its fluorinated analogue.

Study on the phase I metabolism of novel synthetic cannabinoids, APICA and its fluorinated analogue.

Drug testing and analysis (2014-11-28)
Tim Sobolevsky, Ilya Prasolov, Grigory Rodchenkov
ABSTRACT

The data are reported for an in vitro metabolism study of two novel synthetic cannabinoids, N-(1-adamantyl)-1-pentyl-1H-indole-3-carboxamide (APICA) and its fluorinated analog N-(1-adamantyl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (5F-APICA, STS-135), which are active ingredients of smoking mixtures sold in Russia since 2012. The cannabinoids were isolated from herbal mixtures using preparative liquid chromatography and then incubated with human liver microsomes (HLMs). The formed metabolites were characterized by liquid chromatography - triple quadrupole mass spectrometry and high-resolution mass spectrometry with electrospray ionization in positive ion mode. It was found that HLMs produce mono-, di-, and trihydroxylated metabolites, as well as N-desalkyl metabolites, which can be further hydroxylated; the amide bond resisted the metabolic cleavage. For 5F-APICA, a series of oxidative defluorination products formed as well. For in vivo confirmation of the formed in vitro metabolites, spot urine samples from drug users were analyzed with the created method. It was shown that for the detection of APICA abuse, the preferred metabolites are the di- and tri-hydroxylated species, while in case of 5F-APICA, a monohydroxy metabolite is a better target. The N-despentyl (desfluoropentyl) hydroxyadamantyl metabolite also provides good retrospectivity to confirm the administration of any of these cannabinoids.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium phosphate dibasic solution, BioUltra, 0.5 M in H2O
Supelco
Phosphate Standard for IC, TraceCERT®, 1000 mg/L phosphate in water (nominal concentration)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Supelco
17α-Methyltestosterone, VETRANAL®, analytical standard
Sigma-Aldrich
17α-Methyltestosterone, ≥97.0% (HPLC)
Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Glycerin, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Sodium sulfate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Sodium sulfate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Diethyl ether, anhydrous, ACS reagent, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Diethyl ether, ACS reagent, anhydrous, ≥99.0%, contains BHT as inhibitor
Sigma-Aldrich
Diethyl ether, reagent grade, ≥98%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Sodium sulfate, ACS reagent, ≥99.0%, anhydrous, granular
Sigma-Aldrich
Sodium sulfate, ACS reagent, ≥99.0%, anhydrous, powder
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Diethyl ether, ACS reagent, ≥98.0%, contains ≤2% ethanol and ≤10ppm BHT as inhibitor
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Sodium sulfate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Diethyl ether, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%