Skip to Content
Merck
  • Photoactive hybrid material based on pyrene functionalized PbS nanocrystals decorating CVD monolayer graphene.

Photoactive hybrid material based on pyrene functionalized PbS nanocrystals decorating CVD monolayer graphene.

ACS applied materials & interfaces (2015-02-17)
Chiara Ingrosso, Giuseppe V Bianco, Michela Corricelli, Roberto Comparelli, Davide Altamura, Angela Agostiano, Marinella Striccoli, Maria Losurdo, M Lucia Curri, Giovanni Bruno
ABSTRACT

A simple and facile solution-based procedure is implemented for decorating a large area, monolayer graphene film, grown by chemical vapor deposition, with size-tunable light absorbing colloidal PbS nanocrystals (NCs). The hybrid is obtained by exposing a large area graphene film to a solution of 1-pyrene butyric acid surface coated PbS NCs, obtained by a capping exchange procedure onto presynthesized organic-capped NCs. The results demonstrate that at the interface, multiple and cooperative π-π stacking interactions promoted by the pyrene ligand coordinating the NC surface lead to a successful anchoring of the nano-objects on the graphene platform which concomitantly preserves its aromatic structure. Interligand interactions provide organization of the nano-objects in highly interconnected nanostructured multilayer coatings, where the NCs retain geometry and composition. The resulting hybrid exhibits a sheet resistance lower than that of bare graphene, which is explained in terms of electronic communication in the hybrid, due to the interconnection of the NC film and to a hole transfer from photoexcited PbS NCs to graphene, channelled at the interface by pyrene. Such a direct electron coupling makes the manufactured hybrid material an interesting component for optoelectronics, sensors and for optical communication and information technology.

MATERIALS
Product Number
Brand
Product Description

Supelco
Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Trioctylphosphine, technical grade, 90%
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Chloroform, biotech. grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, meets analytical specification of BP, 99-99.4% (GC)
Supelco
Chloroform, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Chloroform, ReagentPlus®, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Carbon, mesoporous
Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Trioctylphosphine, 97%
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, steam activated, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, steam activated, granular
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Activated Charcoal Norit®, Norit® CA1, wood, chemically activated, powder
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%