Skip to Content
Merck
  • Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepod Tigriopus californicus.

Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepod Tigriopus californicus.

Molecular ecology resources (2014-12-10)
Felipe S Barreto, Sean D Schoville, Ronald S Burton
ABSTRACT

Reverse genetic tools are essential for characterizing phenotypes of novel genes and testing functional hypotheses generated from next-generation sequencing studies. RNA interference (RNAi) has been a widely used technique for describing or quantifying physiological, developmental or behavioural roles of target genes by suppressing their expression. The marine intertidal copepod Tigriopus californicus has become an emerging model for evolutionary and physiological studies, but this species is not amenable to most genetic manipulation approaches. As crustaceans are susceptible to RNAi-mediated gene knock-down, we developed a simple method for delivery of gene-specific double-stranded RNA that results in significant suppression of target gene transcription levels. The protocol was examined on five genes of interest, and for each, at least 50% knock-down in expression was achieved. While knock-down levels did not reach 100% in any trial, a well-controlled experiment with one heat-shock gene showed unambiguously that such partial gene suppression may cause dramatic changes in phenotype. Copepods with suppressed expression of heat-shock protein beta 1 (hspb1) exhibited dramatically decreased tolerance to high temperatures, validating the importance of this gene during thermal stress, as proposed by a previous study. The application of this RNAi protocol in T. californicus will be invaluable for examining the role of genes putatively involved in reproductive isolation, mitochondrial function and local adaptation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Potassium phosphate monobasic, 99.99% trace metals basis
Sigma-Aldrich
Water-16O, ≥99.94 atom % 16O
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, suitable for insect cell culture, BioReagent, ≥97.0%
Sigma-Aldrich
Potassium phosphate monobasic, ReagentPlus®
Sigma-Aldrich
Potassium phosphate monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Magnesium chloride, ≥98%
Sigma-Aldrich
Potassium phosphate monobasic, Molecular Biology, ≥98.0%
Sigma-Aldrich
Potassium phosphate monobasic, BioUltra, Molecular Biology, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Sodium Acetate Anhydrous, >99%, FG
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium acetate solution, BioUltra, Molecular Biology, ~3 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~0.025 M in H2O
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Water, Molecular Biology, sterile filtered
Sigma-Aldrich
Sodium acetate, 99.995% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Magnesium chloride solution, Molecular Biology, 1.00 M±0.01 M
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)