Skip to Content
Merck
  • RGD Peptide-Pegylated PLLA Nanoparticles Containing Epirubicin Hydrochloride Exhibit Receptor-Dependent Tumor Trafficking In Vitro and In Vivo.

RGD Peptide-Pegylated PLLA Nanoparticles Containing Epirubicin Hydrochloride Exhibit Receptor-Dependent Tumor Trafficking In Vitro and In Vivo.

Pharmaceutical research (2015-01-17)
Ping Huang, Jun Wu, Ximeng Li, Xiaozheng Liu, Yinghuan Li, Guohui Cui
ABSTRACT

A novel hydrophilic conjugate of arginine-glycine-aspartic acid (RGD) and polyethylene glycol (PEG), i.e., RGD-PEG Mw (M W = 300, 600, 1000 or 4000), was synthesized and employed in epirubicin (EPI) loaded poly L-lactic acid (PLLA) nanoparticles (NPs) to improve its tumor targeting effect. In vitro studies were performed to assess EPI release from NPs in tumor-mimic acidic medium, cytotoxicity and cell cycle assay in HepG2 cells, and cellular uptake kinetics in four types of tumor cells including A375 cells (high integrin receptor expression), HeLa cells (low integrin receptor expression), and metabolic HepG2/SMMC7721 cells. In vivo pharmacodynamics (PD) and pharmacokinetic (PK) studies were determined in a murine ascites tumor model. Cellular uptake kinetics showed integrin receptor-dependent binding and internalization. In vitro release results showed that PLLA and PEG groups retarded EPI release from NPs and promoted drug release amount in acidic medium, which benefited in vivo trafficking to the acidic tumors. In vivo PD and PK studies revealed that RGD-PEG Mw (M W = 600 ~ 1000) improved tumor targeting capacity of NPs by ~2.4-fold, compared to conventional EPI NPs. RGD-PEG Mw (M W = 600 ~ 1000) modified PLLA NPs provide a promising strategy to improve tumor selectivity in cancer treatment.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.6%, ReagentPlus®
Sigma-Aldrich
DCC, 99%
Sigma-Aldrich
DCC, 1.0 M in methylene chloride
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Glycerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Molecular Biology
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Glycerol, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
2-Phenylindole, technical grade, 95%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
N,N-Dimethylformamide, Molecular Biology, ≥99%