Skip to Content
Merck
  • Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration.

Significant abnormalities of the HDL phosphosphingolipidome in type 1 diabetes despite normal HDL cholesterol concentration.

Atherosclerosis (2015-07-06)
Damien Denimal, Jean-Paul Pais de Barros, Jean-Michel Petit, Benjamin Bouillet, Bruno Vergès, Laurence Duvillard
ABSTRACT

Phospholipids and sphingolipids are major components of HDL. They play a critical role in HDL functionality and protective effects against atherosclerosis. As HDL are dysfunctional in type 1 diabetic patients, we ascertained whether they presented abnormalities in their phospholipid and sphingolipid profile, despite normal HDL cholesterol concentration. Using liquid chromatography-tandem mass spectrometry, we quantified the main species of phosphatidylcholines, sphingomyelins, lysophophatidylcholines, phosphatidylethanolamines, phosphatidylinositols, ceramides, plasmalogens and sphingosines 1-phosphate in the HDL2 and HDL3 from 54 type 1 diabetic patients and 50 controls. Serum HDL cholesterol was similar in the 2 groups of subjects. When data were expressed relative to the total amount of phospholipids and sphingolipids, sphingosines-1-phosphate (S1P) were 11.7% (NS) and 14.4% (p = 0.0062) lower in HDL2 and HDL3, respectively, from type 1 diabetic patients than from controls. Ceramides were 23% (p = 0.005) and 24% (borderline significance) lower in HDL2 and HDL3, respectively. The concentration of apolipoprotein M, the carrier of S1P, was similar in patients and controls. In type 1 diabetic patients compared to controls, the concentration of d18:1-S1P, the main S1P species, was decreased in total plasma (-17.0%, p < 0.0001), HDL fraction (-21.9%, p < 0.0001) and non-HDL fraction (-13.7%, p = 0.012). The concentration of ceramides was decreased in total plasma (-24.4%, p < 0.0001), HDL fraction (-27.9%, p = 0.0006) and non-HDL fraction (-22.0%, p = 0.0087). Despite normal HDL cholesterol level, the phospholipid + sphingolipid profile is impaired in HDL from type 1 diabetic patients. These abnormalities, especially the decrease in S1P, could contribute to the impaired HDL functionality observed in these patients.

MATERIALS
Product Number
Brand
Product Description

SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, sterile-filtered, aqueous solution, suitable for cell culture
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
Formic acid, ≥95%, FCC, FG
Sigma-Aldrich
2-Propanol, BioReagent, ≥99.5%, Molecular Biology
Sigma-Aldrich
2-Propanol, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%, poly coated bottles
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Sigma-Aldrich
Ethyl acetate
Sigma-Aldrich
2-Propanol, electronic grade, 99.999% trace metals basis