Direkt zum Inhalt
Merck
  • pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.

pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence.

ACS nano (2015-02-11)
Benjamin Horev, Marlise I Klein, Geelsu Hwang, Yong Li, Dongyeop Kim, Hyun Koo, Danielle S W Benoit
ZUSAMMENFASSUNG

Development of effective therapies to control oral biofilms is challenging, as topically introduced agents must avoid rapid clearance from biofilm-tooth interfaces while targeting biofilm microenvironments. Additionally, exopolysaccharides-matrix and acidification of biofilm microenvironments are associated with cariogenic (caries-producing) biofilm virulence. Thus, nanoparticle carriers capable of binding to hydroxyapatite (HA), saliva-coated HA (sHA), and exopolysaccharides with enhanced drug release at acidic pH were developed. Nanoparticles are formed from diblock copolymers composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate (BMA), and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) that self-assemble into ∼21 nm cationic nanoparticles. Nanoparticles exhibit outstanding adsorption affinities (∼244 L-mmol(-1)) to negatively charged HA, sHA, and exopolysaccharide-coated sHA due to strong electrostatic interactions via multivalent tertiary amines of p(DMAEMA). Owing to hydrophobic cores, nanoparticles load farnesol, a hydrophobic antibacterial drug, at ∼22 wt %. Farnesol release is pH-dependent with t1/2 = 7 and 15 h for release at pH 4.5 and 7.2, as nanoparticles undergo core destabilization at acidic pH, characteristic of cariogenic biofilm microenvironments. Importantly, topical applications of farnesol-loaded nanoparticles disrupted Streptococcus mutans biofilms 4-fold more effectively than free farnesol. Mechanical stability of biofilms treated with drug-loaded nanoparticles was compromised, resulting in >2-fold enhancement in biofilm removal under shear stress compared to free farnesol and controls. Farnesol-loaded nanoparticles effectively attenuated biofilm virulence in vivo using a clinically relevant topical treatment regimen (2×/day) in a rodent dental caries disease model. Strikingly, treatment with farnesol-loaded nanoparticles reduced both the number and severity of carious lesions, while free farnesol had no effect. Nanoparticle carriers have great potential to enhance the efficacy of antibiofilm agents through multitargeted binding and pH-responsive drug release due to microenvironmental triggers.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
N,N-Dimethylformamid, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimethylformamid, suitable for HPLC, ≥99.9%
Sigma-Aldrich
N,N-Dimethylformamid, anhydrous, 99.8%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Saccharose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Saccharose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Calciumchlorid -Lösung, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
N,N-Dimethylformamid, ReagentPlus®, ≥99%
Supelco
Saccharose, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Saccharose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Calciumchlorid, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
Ethanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
N,N-Dimethylformamid, Molecular Biology, ≥99%
Sigma-Aldrich
Saccharose, ≥99.5% (GC)
Sigma-Aldrich
Saccharose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Millipore
Saccharose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Saccharose, ACS reagent
Sigma-Aldrich
Hydroxylapatit, nanopowder, <200 nm particle size (BET), ≥97%, synthetic
Supelco
Ethanol, wasserfrei, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
N,N-Dimethylformamid, biotech. grade, ≥99.9%
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)