Skip to Content
Merck
  • Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system.

Degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides oxidation in an ultrasonic nanoscale zero-valent iron/hydrogen peroxide system.

Journal of hazardous materials (2014-12-03)
Haimei Zhou, Yuanyuan Shen, Ping Lv, Jianji Wang, Pu Li
ABSTRACT

Fenton and Fenton-like oxidation has been already demonstrated to be efficient for the degradation of imidazolium ionic liquids (ILs), but little is known for their degradation pathway and kinetics in such systems. In this work, degradation pathway and kinetics of 1-alkyl-3-methylimidazolium bromides ([Cnmim]Br, n=2, 4, 6, 8, and 10) were investigated in an ultrasound nanoscale zero-valent iron/hydrogen peroxide (US-nZVI/H2O2) system. For this purpose, 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as a representative ionic liquid to optimize pH value, nZVI dose, and H2O2 concentration for the degradation reaction. Then, the degradation kinetics of [Cnmim]Br was investigated under optimal conditions, and their degradation intermediates were monitored by gas chromatography-mass spectrometry (GC-MS). It was shown that the degradation of [Cnmim]Br in such a heterogeneous Fenton-like system could be described by a second order kinetic model, and a number of intermediate products were detected. Based on these intermediate products, detailed pathways were proposed for the degradation of [Cnmim]Br in the ultrasound-assisted nZVI/H2O2 system. These findings may be useful for the better understanding of degradation mechanism of the imidazolium ILs in aqueous solutions.

MATERIALS
Product Number
Brand
Product Description

Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Sigma-Aldrich
Rhein
Sigma-Aldrich
Rhein, technical grade
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Zirconyl chloride octahydrate, reagent grade, 98%
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Supelco
Benzene, analytical standard
Sigma-Aldrich
Ethyl acetate, ReagentPlus®, ≥99.8%
Supelco
Ethyl acetate, analytical standard
Sigma-Aldrich
Ethyl acetate, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl acetate, natural, ≥99%, FCC, FG
Sigma-Aldrich
Benzene, anhydrous, 99.8%
Sigma-Aldrich
Ethyl acetate
Sigma-Aldrich
Ethyl acetate
Supelco
Ethyl Acetate, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Benzene, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Benzene, puriss. p.a., reag. Ph. Eur., ≥99.7%
Sigma-Aldrich
Ethyl acetate, biotech. grade, ≥99.8%
Sigma-Aldrich
Benzene, ACS reagent, ≥99.0%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Ethyl acetate, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Benzene, suitable for HPLC, ≥99.9%