Saltar al contenido
Merck

Prolonged and tunable residence time using reversible covalent kinase inhibitors.

Nature chemical biology (2015-05-26)
J Michael Bradshaw, Jesse M McFarland, Ville O Paavilainen, Angelina Bisconte, Danny Tam, Vernon T Phan, Sergei Romanov, David Finkle, Jin Shu, Vaishali Patel, Tony Ton, Xiaoyan Li, David G Loughhead, Philip A Nunn, Dane E Karr, Mary E Gerritsen, Jens Oliver Funk, Timothy D Owens, Erik Verner, Ken A Brameld, Ronald J Hill, David M Goldstein, Jack Taunton
RESUMEN

Drugs with prolonged on-target residence times often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here we made progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Using an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrated biochemical residence times spanning from minutes to 7 d. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK for more than 18 h after clearance from the circulation. The inverted cyanoacrylamide strategy was further used to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating the generalizability of the approach. Targeting of noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates 'residence time by design', the ability to modulate and improve the duration of target engagement in vivo.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-α-tubulina, monoclonal de ratón, clone DM1A, purified from hybridoma cell culture
En este momento no podemos mostrarle ni los precios ni la disponibilidad
Sigma-Aldrich
CelLytic M, Cell Lysis Reagent, Suitable for Mammalian cell lysis and protein solubilization.
En este momento no podemos mostrarle ni los precios ni la disponibilidad