pH-responsive cationic liposome for endosomal escape mediated drug delivery.

Colloids and surfaces. B, Biointerfaces (2020-01-24)
Sagar Rayamajhi, Jessica Marchitto, Tuyen Duong Thanh Nguyen, Ramesh Marasini, Christian Celia, Santosh Aryal

Endosomal degradation of the nanoparticle is one of the major biological barriers associated with the drug delivery system. Nanoparticles are internalized in the cell via different endocytosis pathways, where they are first delivered to early endosomes which mature to the late endosome and to the lysosome. During this journey, NP encounters a harsh chemical environment resulting in the degradation of NP and its content. This process is collectively called as intracellular defenses against foreign materials. Therefore, to avoid this degradative fate, the endosomal escape technique has been explored following membrane fusion or membrane destabilization mechanisms. However, these methods are limited to the application due to non-specific membrane fusion. To overcome this limitation, we have designed pH-responsive liposome made up of 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-liposome) in which the cationic nitrogen of the ammonium moiety occupies only ∼2.5 % of the molecule. Such a small percentage of the cationic moiety is sufficient enough to exhibit pH-responsive properties while maintaining the biocompatibility of the DC-liposome. DC-liposome showed pH-dependent cationic properties due to the protonation of DC-moiety at acidic pH. The fluorescence-based experiment confirmed pH-dependent fusogenic properties of DC-liposome. Furthermore, the endosomal colocalization study revealed higher localization of DC-liposome in the early endosome compared to that of the late endosome, suggesting possible endosomal escape. Elevated cationic and fusogenic properties of DC-liposome at acidic pH can mediate membrane fusion with anionic endosomal membrane via electrostatic interaction, thereby causing endosomal escape. Moreover, doxorubicin-loaded DC-liposome showed higher cytotoxicity than that of free doxorubicin further supporting our clam of endosomal escape. These findings suggest the potential of DC-liposome to break the endosomal barriers to enhance the therapeutic efficacy thereby guiding us in design consideration in the field of stimuli-responsive delivery agents.

Referencia del producto
Descripción del producto

Egg Liss Rhod PE, L-α-Phosphatidylethanolamine-N-(lissamine rhodamine B sulfonyl) (Ammonium Salt) (Egg-Transphosphatidylated, Chicken), chloroform
Egg Liss Rhod PE, L-α-Phosphatidylethanolamine-N-(lissamine rhodamine B sulfonyl) (Ammonium Salt) (Egg-Transphosphatidylated, Chicken), powder
Egg NBD PE, L-α-Phosphatidylethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (Ammonium Salt) (Egg-Transphosphatidylated, Chicken), chloroform
Egg NBD PE, L-α-Phosphatidylethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (Ammonium Salt) (Egg-Transphosphatidylated, Chicken), powder

Redes sociales

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Investigación. Desarrollo. Producción.

Somos un proveedor líder para la industria de Ciencias de la Vida con soluciones y servicios para investigación, desarrollo y producción biotecnológicos, y para desarrollo y producción de tratamientos farmacéuticos

© 2021 Merck KGaA, Darmstadt, Alemania y/o sus filiales. Todos los derechos reservados.

Queda estrictamente prohibida la reproducción sin permiso de cualquiera de los materiales de la página web.