Saltar al contenido
Merck

Novel human pluripotent stem cell-derived hypothalamus organoids demonstrate cellular diversity.

iScience (2023-08-30)
Lily Sarrafha, Drew R Neavin, Gustavo M Parfitt, Ilya A Kruglikov, Kristen Whitney, Ricardo Reyes, Elena Coccia, Tatyana Kareva, Camille Goldman, Regine Tipon, Gist Croft, John F Crary, Joseph E Powell, Joel Blanchard, Tim Ahfeldt
RESUMEN

The hypothalamus is a region of the brain that plays an important role in regulating body functions and behaviors. There is a growing interest in human pluripotent stem cells (hPSCs) for modeling diseases that affect the hypothalamus. Here, we established an hPSC-derived hypothalamus organoid differentiation protocol to model the cellular diversity of this brain region. Using an hPSC line with a tyrosine hydroxylase (TH)-TdTomato reporter for dopaminergic neurons (DNs) and other TH-expressing cells, we interrogated DN-specific pathways and functions in electrophysiologically active hypothalamus organoids. Single-cell RNA sequencing (scRNA-seq) revealed diverse neuronal and non-neuronal cell types in mature hypothalamus organoids. We identified several molecularly distinct hypothalamic DN subtypes that demonstrated different developmental maturities. Our in vitro 3D hypothalamus differentiation protocol can be used to study the development of this critical brain structure and can be applied to disease modeling to generate novel therapeutic approaches for disorders centered around the hypothalamus.

MATERIALES
Número de producto
Marca
Descripción del producto

Roche
cOmplete, Mini, Cóctel de inhibidores de proteasas, Tablets provided in a glass vial
Sigma-Aldrich
Anticuerpo anti- tirosina hidroxilasa, clon LNC1, ascites fluid, clone LNC1, Chemicon®
Sigma-Aldrich
Anticuerpo anti-proteína gliofibrilar ácida, clon GA5, ascites fluid, clone GA5, Chemicon®
Sigma-Aldrich
Anti-Dermo-1 Antibody, from rabbit, purified by affinity chromatography