Saltar al contenido
Merck

Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract.

Applied microbiology and biotechnology (2008-08-23)
Christopher Martoni, Jasmine Bhathena, Aleksandra Malgorzata Urbanska, Satya Prakash
RESUMEN

This is the first study of its kind to screen probiotic lactic acid bacteria for the purpose of microencapsulating a highly bile salt hydrolase (BSH)-active strain. A Lactobacillus reuteri strain and a Bifidobacterium longum strain were isolated as the highest BSH producers among the candidates. Microcapsules were prepared with a diameter of 619 +/- 31 mum and a cell load of 5 x 10(9) cfu/ml. Post de Man, Rogosa, and Sharpe broth-acid challenge, L. reuteri microcapsules metabolized glyco- and tauro-conjugated bile salts at rates of 10.16 +/- 0.46 and 1.85 +/- 0.33 micromol/g microcapsule per hour, respectively, over the first 2 h. Microencapsulated B. longum had minimal BSH activity and were significantly (P < 0.05) more susceptible to acid challenge. Further testing of L. reuteri microcapsules in a simulated human gastrointestinal (GI) model showed an improved rate, with 49.4 +/- 6.21% of glyco-conjugates depleted after 60 min and complete deconjugation after 4 h. Microcapsules protected the encased cells in the simulated stomach maintaining L. reuteri viability above 10(9), 10(8), and 10(6) cfu/ml after 2 h at pH 3.0, 2.5, and 2.0, respectively. Results show excellent potential for this highly BSH-active microencapsulation system in vitro, highlighted by improved viability and substrate utilization in simulated GI transit.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Choloylglycine Hydrolase from Clostridium perfringens (C. welchii), lyophilized powder, ≥100 units/mg protein